Research Article
BibTex RIS Cite
Year 2018, , 1867 - 1878, 20.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.383147

Abstract

References

  • [1] Kassell, N. F., Torner, J. C., Haley Jr, E. C., Jane, J. A., Adams, H. P., Kongable, G. L. Participants. (1990). The International Cooperative Study on the Timing of Aneurysm Surgery: Part 1: Overall management results. Journal of Neurosurgery, 73(1), 18-36.
  • [2] Steiger, H. J., Reulen, H. J. (1986). Low frequency flow fluctuations in saccular aneurysms. Acta Neurochirurgica, 83(3), 131-137.
  • [3] Ferguson, G. G. (1970). Turbulence in human intracranial saccular aneurysms. Journal of Neurosurgery, 33(5), 485-497.
  • [4] M. Aenis, A.P. Stancampiano, A.K. Wakhloo, A.B. Lieber. (1997). Modeling of flow in a straight stended and nonstended side wall aneurysm model. Journal of Biomedical Engineering, (119), 206-212.
  • [5] Milner, J. S., Moore, J. A., Rutt, B. K., Steinman, D. A. (1998). Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 28(1), 143-156.
  • [6] Y. S. Zhang, X. J. Yang, S. Z. Wang, A, Qiao, J. I. Chang, K. Y. Zhang, Z. C. Liu, Y. J. Zhao, Y. Zhang, B. Luo, C. H. Li. (2010). Hemodynamic effects of stenting on wide-necked intracranial aneurysms. Chinese Medical Journal, 123(15), 1999-2003.
  • [7] Shishir, S. S., Miah, M. A. K., Islam, A. S., Hasan, A. T. (2015). Blood Flow Dynamics in Cerebral Aneurysm-A CFD Simulation. Procedia Engineering, 105, 919-927.
  • [8] Meng, H., Wang, Z., Kim, M., Ecker, R. D., Hopkins, L. N. (2015). Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. American Journal of Neuroradiology, 27(9), 1861-1865.
  • [9] Gonzalez, C. F., Cho, Y. I., Ortega, H. V., Moret, J. (1992). Intracranial aneurysms: flow analysis of their origin and progression. American Journal of Neuroradiology, 13(1), 181-188.
  • [10] Valencia, A., Solis, F. (2006). Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Computers & Structures, 84(21), 1326-1337.
  • [11] Gijsen, F. J. H., Allanic, E., Van de Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. Journal of Biomechanics, 32(7), 705-713.
  • [12] Mercan, H., Atalik, K. (2011). Flow structure for Power-Law fluids in lid-driven arc-shape cavities. Korea-Australia Rheology Journal, 23(2), 71-80.
  • [13] Bouillot, P., Brina, O., Ouared, R., Yilmaz, H., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. Journal of Neurointerventional Surgery, Neurintsurg.
  • [14] Bouillot, P., Brina, O., Ouared, R., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One, 9(12), e113762.
  • [15] Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Kirino, T. (2004). Magnitude and role of wall shear stress on cerebral aneurysm. Stroke, 35(11), 2500-2505.
  • [16] Bogren, H. G., Mohiaddin, R. H., Yang, G. Z., Kilner, P. J., Firmin, D. N. (1995). Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. The Journal of Thoracic and Cardiovascular Surgery, 110(3), 704-714.
  • [17] Tse, K. M., Chiu, P., Lee, H. P., Ho, P. (2011). Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. Journal of Biomechanics, 44(5), 827-836.
  • [18] Humphrey, J. D., Taylor, C. A. (2008). Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng., 10, 221-246.
  • [19] Humphrey, J. D. (2009). Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms. International Journal of Computational Fluid Dynamics, 23(8), 569-581.
  • [20] Di Achille, P., Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.
  • [21] Mei, Y., Chan, I., Chen, D., Watton, P. (2017). A novel Fluid-Solid-Growth-Transport (FSGT) framework for modeling the evolution of intracranial aneurysm disease. In Proceedings of the 5th International Conference on Computational & Mathematical Biomedical Engineering, 1271-1272.

NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS

Year 2018, , 1867 - 1878, 20.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.383147

Abstract

This study aims to provide
insight about how the hemodynamic factors change with artery curvature for a
developing aneurysm during a cardiac cycle. The aneurysm is investigated in
terms of the vortical structure and the shear stress along the curved artery
wall for three developing stages (initial, intermediate and terminal stages),
for three instances of a cardiac cycle (diastole end, systole peak and diastole
start) and for three different vascular geometries. The stream function
vorticity formulation is used with Newtonian constitutive relation. During the
systole peak instance for all aneurysm stages, the central vortex squeezes the
streamlines towards the distal neck of the aneurysm leading to maximum wall
shear stress in the vicinity of the distal wall of the aneurysm. The radius of
curvature of the artery and inertial forces increased the wall shear stress
along the aneurysm wall. The wall shear stress changes direction and
concentrates in the vicinity of the distal neck for all artery geometries. Secondary
vortices are observed in the terminal stage during diastole end and diastole
start instances for the straight arteries and lead to shear stress fluctuations
along the wall. The observations of this study are discussed together with the
relevant clinical and numerical literature.

References

  • [1] Kassell, N. F., Torner, J. C., Haley Jr, E. C., Jane, J. A., Adams, H. P., Kongable, G. L. Participants. (1990). The International Cooperative Study on the Timing of Aneurysm Surgery: Part 1: Overall management results. Journal of Neurosurgery, 73(1), 18-36.
  • [2] Steiger, H. J., Reulen, H. J. (1986). Low frequency flow fluctuations in saccular aneurysms. Acta Neurochirurgica, 83(3), 131-137.
  • [3] Ferguson, G. G. (1970). Turbulence in human intracranial saccular aneurysms. Journal of Neurosurgery, 33(5), 485-497.
  • [4] M. Aenis, A.P. Stancampiano, A.K. Wakhloo, A.B. Lieber. (1997). Modeling of flow in a straight stended and nonstended side wall aneurysm model. Journal of Biomedical Engineering, (119), 206-212.
  • [5] Milner, J. S., Moore, J. A., Rutt, B. K., Steinman, D. A. (1998). Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 28(1), 143-156.
  • [6] Y. S. Zhang, X. J. Yang, S. Z. Wang, A, Qiao, J. I. Chang, K. Y. Zhang, Z. C. Liu, Y. J. Zhao, Y. Zhang, B. Luo, C. H. Li. (2010). Hemodynamic effects of stenting on wide-necked intracranial aneurysms. Chinese Medical Journal, 123(15), 1999-2003.
  • [7] Shishir, S. S., Miah, M. A. K., Islam, A. S., Hasan, A. T. (2015). Blood Flow Dynamics in Cerebral Aneurysm-A CFD Simulation. Procedia Engineering, 105, 919-927.
  • [8] Meng, H., Wang, Z., Kim, M., Ecker, R. D., Hopkins, L. N. (2015). Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. American Journal of Neuroradiology, 27(9), 1861-1865.
  • [9] Gonzalez, C. F., Cho, Y. I., Ortega, H. V., Moret, J. (1992). Intracranial aneurysms: flow analysis of their origin and progression. American Journal of Neuroradiology, 13(1), 181-188.
  • [10] Valencia, A., Solis, F. (2006). Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Computers & Structures, 84(21), 1326-1337.
  • [11] Gijsen, F. J. H., Allanic, E., Van de Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. Journal of Biomechanics, 32(7), 705-713.
  • [12] Mercan, H., Atalik, K. (2011). Flow structure for Power-Law fluids in lid-driven arc-shape cavities. Korea-Australia Rheology Journal, 23(2), 71-80.
  • [13] Bouillot, P., Brina, O., Ouared, R., Yilmaz, H., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. Journal of Neurointerventional Surgery, Neurintsurg.
  • [14] Bouillot, P., Brina, O., Ouared, R., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One, 9(12), e113762.
  • [15] Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Kirino, T. (2004). Magnitude and role of wall shear stress on cerebral aneurysm. Stroke, 35(11), 2500-2505.
  • [16] Bogren, H. G., Mohiaddin, R. H., Yang, G. Z., Kilner, P. J., Firmin, D. N. (1995). Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. The Journal of Thoracic and Cardiovascular Surgery, 110(3), 704-714.
  • [17] Tse, K. M., Chiu, P., Lee, H. P., Ho, P. (2011). Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. Journal of Biomechanics, 44(5), 827-836.
  • [18] Humphrey, J. D., Taylor, C. A. (2008). Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng., 10, 221-246.
  • [19] Humphrey, J. D. (2009). Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms. International Journal of Computational Fluid Dynamics, 23(8), 569-581.
  • [20] Di Achille, P., Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.
  • [21] Mei, Y., Chan, I., Chen, D., Watton, P. (2017). A novel Fluid-Solid-Growth-Transport (FSGT) framework for modeling the evolution of intracranial aneurysm disease. In Proceedings of the 5th International Conference on Computational & Mathematical Biomedical Engineering, 1271-1272.
There are 21 citations in total.

Details

Journal Section Articles
Authors

Hatice Mercan This is me

Publication Date December 20, 2017
Submission Date November 10, 2017
Published in Issue Year 2018

Cite

APA Mercan, H. (2017). NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS. Journal of Thermal Engineering, 4(2), 1867-1878. https://doi.org/10.18186/journal-of-thermal-engineering.383147
AMA Mercan H. NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS. Journal of Thermal Engineering. December 2017;4(2):1867-1878. doi:10.18186/journal-of-thermal-engineering.383147
Chicago Mercan, Hatice. “NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS”. Journal of Thermal Engineering 4, no. 2 (December 2017): 1867-78. https://doi.org/10.18186/journal-of-thermal-engineering.383147.
EndNote Mercan H (December 1, 2017) NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS. Journal of Thermal Engineering 4 2 1867–1878.
IEEE H. Mercan, “NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS”, Journal of Thermal Engineering, vol. 4, no. 2, pp. 1867–1878, 2017, doi: 10.18186/journal-of-thermal-engineering.383147.
ISNAD Mercan, Hatice. “NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS”. Journal of Thermal Engineering 4/2 (December 2017), 1867-1878. https://doi.org/10.18186/journal-of-thermal-engineering.383147.
JAMA Mercan H. NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS. Journal of Thermal Engineering. 2017;4:1867–1878.
MLA Mercan, Hatice. “NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS”. Journal of Thermal Engineering, vol. 4, no. 2, 2017, pp. 1867-78, doi:10.18186/journal-of-thermal-engineering.383147.
Vancouver Mercan H. NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS. Journal of Thermal Engineering. 2017;4(2):1867-78.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering