Research Article
BibTex RIS Cite
Year 2020, , 226 - 246, 01.12.2020
https://doi.org/10.18186/thermal.820234

Abstract

References

  • [1] Tumen Ozdil NF, Pekdur A. Energy and exergy assessment of a cogeneration system in food industry: A case study. Int J Exergy 2016. doi:10.1504/IJEX.2016.076866.
  • [2] Tumen Ozdil NF, Tantekin A, Erbay Z. Energy and exergy analyses of a fluidized bed coal combustor steam plant in textile industry. Fuel 2016. doi:10.1016/j.fuel.2016.06.091.
  • [3] Özdil NF, Tantekin A, Pekdur A. Performance assessment of a cogeneration system in food industry. J Therm Eng 2018. doi:10.18186/journal-of-thermal-engineering.382412.
  • [4] Tantekin A, Özdil NF. Thermodynamic analysis of a fluidized bed coal combustor steam plant in textile industry. J Therm Eng 2017. doi:10.18186/journal-of-thermal-engineering.353690.
  • [5] Tumen Ozdil NF, Tantekin A. Exergy and exergoeconomic assessments of an electricity production system in a running wastewater treatment plant. Renew Energy 2016. doi:10.1016/j.renene.2016.05.039.
  • [6] Ghaebi H, Abbaspour G. Performance analysis and thermodynamic modeling of a poly generation system by integrating a multi-effect-desalination thermo-vapor compression (MED-TVC) system with a combined cooling, heating and power (CCHP) system. J Therm Eng 2018. doi:10.18186/journal-of-thermal-engineering.410264.
  • [7] Thornley P, Upham P, Huang Y, Rezvani S, Brammer J, Rogers J. Integrated assessment of bioelectricity technology options. Energy Policy 2009. doi:10.1016/j.enpol.2008.10.032.
  • [8] Bove R, Lunghi P. Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers Manag 2006. doi:10.1016/j.enconman.2005.08.017.
  • [9] Sun L, Fujii M, Tasaki T, Dong H, Ohnishi S. Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resour Conserv Recycl 2018. doi:10.1016/j.resconrec.2018.05.005.
  • [10] Xydis G, Nanaki E, Koroneos C. Exergy analysis of biogas production from a municipal solid waste landfill. Sustain Energy Technol Assessments 2013. doi:10.1016/j.seta.2013.08.003.
  • [11] Trindade AB, Carlos J, Palacio E, González AM, Rúa Orozco DJ, Silva Lora EE, et al. Advanced exergy analysis and environmental assesment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Convers Manag 2018.
  • [12] Azami S, Taheri M, Pourali O, Torabi F. Energy and exergy analyses of a mass-fired boiler for a proposed waste-to-energy power plant in Tehran. Appl Therm Eng 2018. doi:10.1016/j.applthermaleng.2018.05.045.
  • [13] Leckner B. Process aspects in combustion and gasification Waste-to-Energy (WtE) units. Waste Manag 2015. doi:10.1016/j.wasman.2014.04.019.
  • [14] Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 2015. doi:10.1016/j.wasman.2014.11.010.
  • [15] Hong J, Li X, Zhaojie C. Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag 2010. doi:10.1016/j.wasman.2010.03.038.
  • [16] Damgaard A, Riber C, Fruergaard T, Hulgaard T, Christensen TH. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag 2010. doi:10.1016/j.wasman.2010.03.025.
  • [17] Hessami MA. Specific applications of bio/landfill gas produced from waste organic material. Renew Energy 1994. doi:10.1016/0960-1481(94)90099-X.
  • [18] Raj NT, Iniyan S, Goic R. A review of renewable energy based cogeneration technologies. Renew Sustain Energy Rev 2011. doi:10.1016/j.rser.2011.06.003.
  • [19] Murphy JD, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energy 2004. doi:10.1016/j.renene.2003.12.002.
  • [20] EES. Software n.d. http://www.fchart.com/ees/.
  • [21] Houck CR, Joines JA, Key MG. A Genetic Algorithm for Function Optimization: A Matlab Implementation. 1995.
  • [22] Smith JM. Introduction to chemical engineering thermodynamics. J Chem Educ 1950. doi:10.1021/ed027p584.3.
  • [23] Ghasemi A, Heidarnejad P, Noorpoor A. A novel solar-biomass based multi-generation energy system including water desalination and liquefaction of natural gas system: Thermodynamic and thermoeconomic optimization. J Clean Prod 2018. doi:10.1016/j.jclepro.2018.05.160.
  • [24] Kotas TJ. Exergy analysis of simple processes. Exergy Method Therm. Plant Anal., 1985. doi:10.1016/b978-0-408-01350-5.50011-8.
  • [25] Noorpoor A, Heidarnejad P, Hashemian N, Ghasemi A. A thermodynamic model for exergetic performance and optimization of a solar and biomass-fuelled multigeneration system. Energy Equip Syst 2016. doi:10.22059/ees.2016.23044.
  • [26] Dincer I, Rosen MA. Energy, environment and sustainable development. Appl. Energy, 1999. doi:10.1016/S0306-2619(99)00111-7.
  • [27] Seshadri K. Thermal design and optimization. vol. 21. 1996. doi:10.1016/s0360-5442(96)90000-6.
  • [28] Kaviri AG, Jaafar MNM, Lazim TM. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm. Energy Convers Manag 2012. doi:10.1016/j.enconman.2012.01.002.
  • [29] Baghernejad A, Yaghoubi M. Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm. Energy Convers Manag 2011. doi:10.1016/j.enconman.2010.12.019.
  • [30] Ghasemi A, Hashemian N, Noorpoor A, Heidarnejad P. Exergy based optimization of a biomass and solar fuelled cchp hybrid seawater desalination plant. J Therm Eng 2017. doi:10.18186/thermal.290251.
  • [31] Ameri M, Mokhtari H, Mostafavi Sani M. 4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant. Energy 2018. doi:10.1016/j.energy.2018.05.039.
  • [32] Golkar B, Naserabad SN, Soleimany F, Dodange M, Ghasemi A, Mokhtari H, et al. Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: Case study. Appl Therm Eng 2019;149:132–50. doi:10.1016/j.applthermaleng.2018.12.017.
  • [33] Cao Y, Nikafshan Rad H, Hamedi Jamali D, Hashemian N, Ghasemi A. A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy Convers Manag 2020;219:112961. doi:10.1016/j.enconman.2020.112961.
  • [34] Woon KS, Lo IMC. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong. Sci Total Environ 2013. doi:10.1016/j.scitotenv.2013.04.061.
  • [35] Wanichpongpan W, Gheewala SH. Life cycle assessment as a decision support tool for landfill gas-to energy projects. J Clean Prod 2007. doi:10.1016/j.jclepro.2006.06.008.
  • [36] https://www.epa.gov/air-emissions-factors-and-quantification/emissions-estimation-tools/2017.08 2017.
  • [37] http://pasmandvaramin.ir/2017.08 2017............................

THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN

Year 2020, , 226 - 246, 01.12.2020
https://doi.org/10.18186/thermal.820234

Abstract

Waste to energy (WtE) introduces an appropriate solution for municipal solid waste (MSW) disposal and greenhouse gas emission reduction. In this study, for Varamin MSW management, a gas turbine plant with heat recovery unit that is fed by landfill gas (LFG) and combined heat and power (CHP) incineration plant is investigated and compared as two WtE systems to reveal the best plant effectively. Exergy and environmental analyses of two systems are performed. Moreover, the effects of key parameters as decision variables on the energy and exergy efficiencies are identified by sensitive analysis of both systems. Multi-objective optimization of thermal and exergy efficiencies are then done by using Genetic Algorithm (GA) for each studied system. As a result, Furnace in incineration system and Combustion Chamber in landfill system have the most exergy destruction rate. Also, optimization results show that thermal and exergy effectiveness for landfill system are improved by 7.01% and 6.53% respectively; these values for incineration system are calculated to be 45.35% and 92.75% respectively.

References

  • [1] Tumen Ozdil NF, Pekdur A. Energy and exergy assessment of a cogeneration system in food industry: A case study. Int J Exergy 2016. doi:10.1504/IJEX.2016.076866.
  • [2] Tumen Ozdil NF, Tantekin A, Erbay Z. Energy and exergy analyses of a fluidized bed coal combustor steam plant in textile industry. Fuel 2016. doi:10.1016/j.fuel.2016.06.091.
  • [3] Özdil NF, Tantekin A, Pekdur A. Performance assessment of a cogeneration system in food industry. J Therm Eng 2018. doi:10.18186/journal-of-thermal-engineering.382412.
  • [4] Tantekin A, Özdil NF. Thermodynamic analysis of a fluidized bed coal combustor steam plant in textile industry. J Therm Eng 2017. doi:10.18186/journal-of-thermal-engineering.353690.
  • [5] Tumen Ozdil NF, Tantekin A. Exergy and exergoeconomic assessments of an electricity production system in a running wastewater treatment plant. Renew Energy 2016. doi:10.1016/j.renene.2016.05.039.
  • [6] Ghaebi H, Abbaspour G. Performance analysis and thermodynamic modeling of a poly generation system by integrating a multi-effect-desalination thermo-vapor compression (MED-TVC) system with a combined cooling, heating and power (CCHP) system. J Therm Eng 2018. doi:10.18186/journal-of-thermal-engineering.410264.
  • [7] Thornley P, Upham P, Huang Y, Rezvani S, Brammer J, Rogers J. Integrated assessment of bioelectricity technology options. Energy Policy 2009. doi:10.1016/j.enpol.2008.10.032.
  • [8] Bove R, Lunghi P. Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers Manag 2006. doi:10.1016/j.enconman.2005.08.017.
  • [9] Sun L, Fujii M, Tasaki T, Dong H, Ohnishi S. Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resour Conserv Recycl 2018. doi:10.1016/j.resconrec.2018.05.005.
  • [10] Xydis G, Nanaki E, Koroneos C. Exergy analysis of biogas production from a municipal solid waste landfill. Sustain Energy Technol Assessments 2013. doi:10.1016/j.seta.2013.08.003.
  • [11] Trindade AB, Carlos J, Palacio E, González AM, Rúa Orozco DJ, Silva Lora EE, et al. Advanced exergy analysis and environmental assesment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Convers Manag 2018.
  • [12] Azami S, Taheri M, Pourali O, Torabi F. Energy and exergy analyses of a mass-fired boiler for a proposed waste-to-energy power plant in Tehran. Appl Therm Eng 2018. doi:10.1016/j.applthermaleng.2018.05.045.
  • [13] Leckner B. Process aspects in combustion and gasification Waste-to-Energy (WtE) units. Waste Manag 2015. doi:10.1016/j.wasman.2014.04.019.
  • [14] Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 2015. doi:10.1016/j.wasman.2014.11.010.
  • [15] Hong J, Li X, Zhaojie C. Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag 2010. doi:10.1016/j.wasman.2010.03.038.
  • [16] Damgaard A, Riber C, Fruergaard T, Hulgaard T, Christensen TH. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag 2010. doi:10.1016/j.wasman.2010.03.025.
  • [17] Hessami MA. Specific applications of bio/landfill gas produced from waste organic material. Renew Energy 1994. doi:10.1016/0960-1481(94)90099-X.
  • [18] Raj NT, Iniyan S, Goic R. A review of renewable energy based cogeneration technologies. Renew Sustain Energy Rev 2011. doi:10.1016/j.rser.2011.06.003.
  • [19] Murphy JD, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energy 2004. doi:10.1016/j.renene.2003.12.002.
  • [20] EES. Software n.d. http://www.fchart.com/ees/.
  • [21] Houck CR, Joines JA, Key MG. A Genetic Algorithm for Function Optimization: A Matlab Implementation. 1995.
  • [22] Smith JM. Introduction to chemical engineering thermodynamics. J Chem Educ 1950. doi:10.1021/ed027p584.3.
  • [23] Ghasemi A, Heidarnejad P, Noorpoor A. A novel solar-biomass based multi-generation energy system including water desalination and liquefaction of natural gas system: Thermodynamic and thermoeconomic optimization. J Clean Prod 2018. doi:10.1016/j.jclepro.2018.05.160.
  • [24] Kotas TJ. Exergy analysis of simple processes. Exergy Method Therm. Plant Anal., 1985. doi:10.1016/b978-0-408-01350-5.50011-8.
  • [25] Noorpoor A, Heidarnejad P, Hashemian N, Ghasemi A. A thermodynamic model for exergetic performance and optimization of a solar and biomass-fuelled multigeneration system. Energy Equip Syst 2016. doi:10.22059/ees.2016.23044.
  • [26] Dincer I, Rosen MA. Energy, environment and sustainable development. Appl. Energy, 1999. doi:10.1016/S0306-2619(99)00111-7.
  • [27] Seshadri K. Thermal design and optimization. vol. 21. 1996. doi:10.1016/s0360-5442(96)90000-6.
  • [28] Kaviri AG, Jaafar MNM, Lazim TM. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm. Energy Convers Manag 2012. doi:10.1016/j.enconman.2012.01.002.
  • [29] Baghernejad A, Yaghoubi M. Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm. Energy Convers Manag 2011. doi:10.1016/j.enconman.2010.12.019.
  • [30] Ghasemi A, Hashemian N, Noorpoor A, Heidarnejad P. Exergy based optimization of a biomass and solar fuelled cchp hybrid seawater desalination plant. J Therm Eng 2017. doi:10.18186/thermal.290251.
  • [31] Ameri M, Mokhtari H, Mostafavi Sani M. 4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant. Energy 2018. doi:10.1016/j.energy.2018.05.039.
  • [32] Golkar B, Naserabad SN, Soleimany F, Dodange M, Ghasemi A, Mokhtari H, et al. Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: Case study. Appl Therm Eng 2019;149:132–50. doi:10.1016/j.applthermaleng.2018.12.017.
  • [33] Cao Y, Nikafshan Rad H, Hamedi Jamali D, Hashemian N, Ghasemi A. A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy Convers Manag 2020;219:112961. doi:10.1016/j.enconman.2020.112961.
  • [34] Woon KS, Lo IMC. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong. Sci Total Environ 2013. doi:10.1016/j.scitotenv.2013.04.061.
  • [35] Wanichpongpan W, Gheewala SH. Life cycle assessment as a decision support tool for landfill gas-to energy projects. J Clean Prod 2007. doi:10.1016/j.jclepro.2006.06.008.
  • [36] https://www.epa.gov/air-emissions-factors-and-quantification/emissions-estimation-tools/2017.08 2017.
  • [37] http://pasmandvaramin.ir/2017.08 2017............................
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Amir Ghasemı This is me 0000-0002-3910-6828

Mehrnoosh Moghaddam This is me 0000-0003-2039-9859

Publication Date December 1, 2020
Submission Date August 5, 2018
Published in Issue Year 2020

Cite

APA Ghasemı, A., & Moghaddam, M. (2020). THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN. Journal of Thermal Engineering, 6(6), 226-246. https://doi.org/10.18186/thermal.820234
AMA Ghasemı A, Moghaddam M. THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN. Journal of Thermal Engineering. December 2020;6(6):226-246. doi:10.18186/thermal.820234
Chicago Ghasemı, Amir, and Mehrnoosh Moghaddam. “THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN”. Journal of Thermal Engineering 6, no. 6 (December 2020): 226-46. https://doi.org/10.18186/thermal.820234.
EndNote Ghasemı A, Moghaddam M (December 1, 2020) THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN. Journal of Thermal Engineering 6 6 226–246.
IEEE A. Ghasemı and M. Moghaddam, “THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN”, Journal of Thermal Engineering, vol. 6, no. 6, pp. 226–246, 2020, doi: 10.18186/thermal.820234.
ISNAD Ghasemı, Amir - Moghaddam, Mehrnoosh. “THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN”. Journal of Thermal Engineering 6/6 (December 2020), 226-246. https://doi.org/10.18186/thermal.820234.
JAMA Ghasemı A, Moghaddam M. THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN. Journal of Thermal Engineering. 2020;6:226–246.
MLA Ghasemı, Amir and Mehrnoosh Moghaddam. “THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN”. Journal of Thermal Engineering, vol. 6, no. 6, 2020, pp. 226-4, doi:10.18186/thermal.820234.
Vancouver Ghasemı A, Moghaddam M. THERMODYNAMIC AND ENVIRONMENTAL COMPARATIVE INVESTIGATION AND OPTIMIZATION OF LANDFILL VS. INCINERATION FOR MUNICIPAL SOLID WASTE: A CASE STUDY IN VARAMIN, IRAN. Journal of Thermal Engineering. 2020;6(6):226-4.

Cited By






















IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering