Research Article
BibTex RIS Cite
Year 2021, , 240 - 255, 01.02.2021
https://doi.org/10.18186/thermal.872184

Abstract

References

  • [1] Chow J, Kopp RJ, Portney PR. Energy Resources and Global Development. Science 2003;302:1528-31. DOI: 10.1126/science.1091939.
  • [2] Batchelder JS, Zewail AH, Cole T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl Opt 1979;18: 3090-110. https://doi.org/10.1364/AO.18.003090.
  • [3] Batchelder JS, Zewail AH, Cole T. Luminescent solar concentrators 2: Experimental and theoretical analysis of their possible efficiencies. Appl Opt 1981;20:3733-54. https://doi.org/10.1364/AO.20.003733.
  • [4] Friedman PS Luminescent Solar Concentrators. Optical Engineering 1981;20:206887. https://doi.org/10.1117/12.7972831
  • [5] Slooff LH, Bende EE, Burgers AR, Budel T, Pravettoni M, Kenny RP, Dunlop ED, Büchtemann A. A luminescent solar concentrator with 7.1% power conversion efficiency. Physica status solidi (RRL) - Rapid Research Letters 2008;2:257–259. https://doi.org/10.1002/pssr.200802186.
  • [6] Debije MG, Verbunt PPC, Rowan BC, Richards BS, Hoeks TH. Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 2008;47:6763-6768. https://doi.org/10.1364/AO.47.006763.
  • [7] Vishwanathan B, Reinders AHME, De Boer DKG, Desmet L, Ras AJM, Zahn FH, Debije MG. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators. Solar Energy 2015;112:120–127. https://doi.org/10.1016/j.solener.2014.12.001.
  • [8] Earp AA, Smith GB, Franklin J, Swift P. Optimization of a three-colour luminescent solar concentrator day lighting system. Solar Energy Materials & Solar Cells 2004;84: 411–26. DOI: 10.1016/j.solmat.2004.02.046
  • [9] Earp AA, Smith GB, Swift PD, Franklin J. Maximising the light output of a Luminescent Solar Concentrator. Solar Energy 2004;76:655–67. https://doi.org/10.1016/j.solener.2004.02.001.
  • [10] Noyola HF, Potterveld DH, Holt RJ, Darling SB. Optimizing luminescent solar concentrator design. Energy and Environmental Science 2012;5:5798-802. https://doi.org/10.1039/C1EE02376D
  • [11] Olson RW, Loring RF, Fayer MD. Luminescent solar concentrators and the reabsorption problem. Appl Opt 1981;20:2934-40. https://doi.org/10.1364/AO.20.002934
  • [12] Mcintosh KR, Yamada N, Richards BS. Theoretical comparison of cylindrical and square-planar luminescent solar concentrators. Appl Phys B 2007;88:285–290. https://doi.org/10.1007/s00340-007-2705-8
  • [13] Debije MG, Teunissen JP, Kastelijn MJ, Verbunt PPC, Bastiaansen CWM. The effect of a scattering layer on the edge output of a luminescent solar concentrator. Sol Energy Mater Sol Cells 2009;93:1345–50. https://doi.org/10.1016/j.solmat.2009.02.013.
  • [14] Desmet L, Ras AJM, de Boer DKG, Debije MG. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt Letters 2012;37:3087-89. https://doi.org/10.1364/OL.37.003087.
  • [15] Mulder CL, Reusswig PD, Velázquez AM, Kim H, Rotschild C, Baldo MA. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling. Opt Express 2010;18:A79-A90. https://doi.org/10.1364/OE.18.000A79.
  • [16] Debije MG, Van MP, Verbunt PPC, Kastelijn MJ, van der Blom RHL, Broer DJ, Bastiaansen CWM. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Appl Opt 2010;49:745-51. https://doi.org/10.1364/AO.49.000745
  • [17] van Sark WGJHM, Barnham KWJ, Slooff LH, Chatten AJ, Büchtemann A, Meyer A, McCormack SJ, Koole R, Farrell DJ, Bose R, Bende EE, Burgers AR, Budel T, Quilitz J, Kennedy M, Meyer T, Donegá CDM, Meijerink A, Vanmaekelbergh D Luminescent Solar Concentrators: a review of recent results. Opt Express 2008; 16:21773–92. https://doi.org/10.1364/OE.16.021773
  • [18] Wang X, Wang T, Tian X, Wang L, Wu W, Luo Y, Zhang Q. Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region. Sol Energy 2011;85:2179–84. https://doi.org/10.1016/j.solener.2011.06.007
  • [19] Wittwer V, Stahl W, Goetzberger A. Fluorescent planar concentrators. Sol Energy Mater Sol Cells 1984;11:187–97. https://doi.org/10.1016/0165-1633(84)90070-4
  • [20] Sholin V, Olson JD, Carter SA. Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J Appl Phys 2007;101:123114–123114. https://doi.org/10.1063/1.2748350
  • [21] Kastelijn MJ, Bastiaansen CWM, Debije MG. Influence of waveguide material on light emission in luminescent solar concentrators. Optical Materials 2009;31:1720–22. https://doi.org/10.1016/j.optmat.2009.05.003
  • [22] Debije MG, Verbunt PPC. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Advanced Energy Materials 2012;2:12–35. https://doi.org/10.1002/aenm.201100554
  • [23] Tsoi, S. Structured luminescent solar energy concentrators: a new route towards inexpensive photovoltaic energy Eindhoven: Technische Universiteit Eindhoven 2012. https://doi.org/10.6100/IR724488
  • [24] Tsoi S, Broer DJ, Bastiaansen CWM and Debije MG. Patterned dye structure limit reabsorption in luminescent solar concentrators. Opt Express 2010;18:A536–A543. https://doi.org/10.1364/OE.18.00A536
  • [25] Albers PTM, Bastiaansen CWM, Debije MG. Dual waveguide patterned luminescent solar concentrators. Sol Energy 2013;95:216–23. https://doi.org/10.1016/j.solener.2013.06.014
  • [26] Gallagher SJ, Norton B, Eames PC. Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol Energy 2007;81:813–21. https://doi.org/10.1016/j.solener.2006.09.011
  • [27] Goldschmidt JC, Peters M, Bösch A, Helmers H, Dimroth F, Glunz SW, Willeke G. Increasing the efficiency of fluorescent concentrator systems. Sol Energy Mater Sol Cells 2009;93:176–82. https://doi.org/10.1016/j.solmat.2008.09.048
  • [28] Farrell DJ, van Sark WGJHM, Velthuijsen ST, Schropp REI. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators. Physica Status Solidi 2010;7:1045-48. https://doi.org/10.1002/pssc.200982866
  • [29] Hermann AM. Luminescent solar concentrators—A review. Sol Energy 1982;29:323–29. https://doi.org/10.1016/0038-092X(82)90247-X
  • [30] Griffini G, Levi M, Turri S. Thin-film luminescent solar concentrators: A device study towards rational design. Renew Energy 2015;78:288-94. https://doi.org/10.1016/j.renene.2015.01.009
  • [31] Krumer Z, van Sark WGJHM, Schropp REI, Donegá CDM. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol Energy Mater Sol Cells 2017;167:133-39. https://doi.org/10.1016/j.solmat.2017.04.010
  • [32] Mateen F, Oh H, Kang J, Lee SY, Hong SK. Improvement in the performance of luminescent solar concentrator using array of cylindrical optical fibers. Renew Energy 2019;138:691-96. https://doi.org/10.1016/j.renene.2019.02.021
  • [33] Rafiee M, Chandra S, Ahmed H, McCormack SJ. An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Optical Materials 2019;91:212-27. https://doi.org/10.1016/j.optmat.2019.01.007
  • [34] Sahin D, Ilan B, Kelley DF. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J App Phys 2011;110:033108. https://doi.org/10.1063/1.3619809
  • [35] Burgers AR, Slooff LH, Kinderman R, van Roosmalen JAM. Modeling of luminescent concentrators by ray-tracing. Proc. 20th European Photovoltaic Sol Energy Conf. 2005, p. 394-7.
  • [36] Leow SW, Corrado C, Osborn M, Isaacson M, Alers G, Carter SA. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J App Phys 2013;113:214510.
  • [37] Carrascosa M, Unamuno S, Agullo-Lopez F. Monte Carlo simulation of the performance of PMMA luminescent solar collectors. App Opt 1983; 22: 3236-41. https://doi.org/10.1364/AO.22.003236
  • [38] Green AP. Optical Properties of Luminescent Solar Concentrators: PhD Thesis. The University of Sheffield, England. 2014
  • [39] Green MA. Solar cell fill factors: General graph and empirical expressions. Solid State Electronics 1981;24:788 – 89. https://doi.org/10.1016/0038-1101(81)90062-9

EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR

Year 2021, , 240 - 255, 01.02.2021
https://doi.org/10.18186/thermal.872184

Abstract

The present paper investigates the Luminescent Solar Concentrator (LSC) with single and dual waveguide coated with perylene dye of various concentrations. Monte Carlo simulations are carried out to assess the efficiency of the LSC with the waveguide areas varying from 10 to 110 cm2, and the dye concentration varying from 30 to 800 PPM. The percentage of dye area coated in the waveguides is varied from 20 to 80%. Results indicate that the LSC efficiency increases with dye concentration up to a particular value, and thereafter shows a decreasing trend. Further, LSC efficiency is found to be increasing with a decrease in waveguide size. Experimental and simulation results indicate the maximum efficiency at the dye coverage area of 50%. Simulation results indicate the maximum LSC efficiency of around 9%, while the same is around 6% when examined experimentally.

References

  • [1] Chow J, Kopp RJ, Portney PR. Energy Resources and Global Development. Science 2003;302:1528-31. DOI: 10.1126/science.1091939.
  • [2] Batchelder JS, Zewail AH, Cole T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl Opt 1979;18: 3090-110. https://doi.org/10.1364/AO.18.003090.
  • [3] Batchelder JS, Zewail AH, Cole T. Luminescent solar concentrators 2: Experimental and theoretical analysis of their possible efficiencies. Appl Opt 1981;20:3733-54. https://doi.org/10.1364/AO.20.003733.
  • [4] Friedman PS Luminescent Solar Concentrators. Optical Engineering 1981;20:206887. https://doi.org/10.1117/12.7972831
  • [5] Slooff LH, Bende EE, Burgers AR, Budel T, Pravettoni M, Kenny RP, Dunlop ED, Büchtemann A. A luminescent solar concentrator with 7.1% power conversion efficiency. Physica status solidi (RRL) - Rapid Research Letters 2008;2:257–259. https://doi.org/10.1002/pssr.200802186.
  • [6] Debije MG, Verbunt PPC, Rowan BC, Richards BS, Hoeks TH. Measured surface loss from luminescent solar concentrator waveguides. Appl Opt 2008;47:6763-6768. https://doi.org/10.1364/AO.47.006763.
  • [7] Vishwanathan B, Reinders AHME, De Boer DKG, Desmet L, Ras AJM, Zahn FH, Debije MG. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators. Solar Energy 2015;112:120–127. https://doi.org/10.1016/j.solener.2014.12.001.
  • [8] Earp AA, Smith GB, Franklin J, Swift P. Optimization of a three-colour luminescent solar concentrator day lighting system. Solar Energy Materials & Solar Cells 2004;84: 411–26. DOI: 10.1016/j.solmat.2004.02.046
  • [9] Earp AA, Smith GB, Swift PD, Franklin J. Maximising the light output of a Luminescent Solar Concentrator. Solar Energy 2004;76:655–67. https://doi.org/10.1016/j.solener.2004.02.001.
  • [10] Noyola HF, Potterveld DH, Holt RJ, Darling SB. Optimizing luminescent solar concentrator design. Energy and Environmental Science 2012;5:5798-802. https://doi.org/10.1039/C1EE02376D
  • [11] Olson RW, Loring RF, Fayer MD. Luminescent solar concentrators and the reabsorption problem. Appl Opt 1981;20:2934-40. https://doi.org/10.1364/AO.20.002934
  • [12] Mcintosh KR, Yamada N, Richards BS. Theoretical comparison of cylindrical and square-planar luminescent solar concentrators. Appl Phys B 2007;88:285–290. https://doi.org/10.1007/s00340-007-2705-8
  • [13] Debije MG, Teunissen JP, Kastelijn MJ, Verbunt PPC, Bastiaansen CWM. The effect of a scattering layer on the edge output of a luminescent solar concentrator. Sol Energy Mater Sol Cells 2009;93:1345–50. https://doi.org/10.1016/j.solmat.2009.02.013.
  • [14] Desmet L, Ras AJM, de Boer DKG, Debije MG. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt Letters 2012;37:3087-89. https://doi.org/10.1364/OL.37.003087.
  • [15] Mulder CL, Reusswig PD, Velázquez AM, Kim H, Rotschild C, Baldo MA. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling. Opt Express 2010;18:A79-A90. https://doi.org/10.1364/OE.18.000A79.
  • [16] Debije MG, Van MP, Verbunt PPC, Kastelijn MJ, van der Blom RHL, Broer DJ, Bastiaansen CWM. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Appl Opt 2010;49:745-51. https://doi.org/10.1364/AO.49.000745
  • [17] van Sark WGJHM, Barnham KWJ, Slooff LH, Chatten AJ, Büchtemann A, Meyer A, McCormack SJ, Koole R, Farrell DJ, Bose R, Bende EE, Burgers AR, Budel T, Quilitz J, Kennedy M, Meyer T, Donegá CDM, Meijerink A, Vanmaekelbergh D Luminescent Solar Concentrators: a review of recent results. Opt Express 2008; 16:21773–92. https://doi.org/10.1364/OE.16.021773
  • [18] Wang X, Wang T, Tian X, Wang L, Wu W, Luo Y, Zhang Q. Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region. Sol Energy 2011;85:2179–84. https://doi.org/10.1016/j.solener.2011.06.007
  • [19] Wittwer V, Stahl W, Goetzberger A. Fluorescent planar concentrators. Sol Energy Mater Sol Cells 1984;11:187–97. https://doi.org/10.1016/0165-1633(84)90070-4
  • [20] Sholin V, Olson JD, Carter SA. Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J Appl Phys 2007;101:123114–123114. https://doi.org/10.1063/1.2748350
  • [21] Kastelijn MJ, Bastiaansen CWM, Debije MG. Influence of waveguide material on light emission in luminescent solar concentrators. Optical Materials 2009;31:1720–22. https://doi.org/10.1016/j.optmat.2009.05.003
  • [22] Debije MG, Verbunt PPC. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Advanced Energy Materials 2012;2:12–35. https://doi.org/10.1002/aenm.201100554
  • [23] Tsoi, S. Structured luminescent solar energy concentrators: a new route towards inexpensive photovoltaic energy Eindhoven: Technische Universiteit Eindhoven 2012. https://doi.org/10.6100/IR724488
  • [24] Tsoi S, Broer DJ, Bastiaansen CWM and Debije MG. Patterned dye structure limit reabsorption in luminescent solar concentrators. Opt Express 2010;18:A536–A543. https://doi.org/10.1364/OE.18.00A536
  • [25] Albers PTM, Bastiaansen CWM, Debije MG. Dual waveguide patterned luminescent solar concentrators. Sol Energy 2013;95:216–23. https://doi.org/10.1016/j.solener.2013.06.014
  • [26] Gallagher SJ, Norton B, Eames PC. Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol Energy 2007;81:813–21. https://doi.org/10.1016/j.solener.2006.09.011
  • [27] Goldschmidt JC, Peters M, Bösch A, Helmers H, Dimroth F, Glunz SW, Willeke G. Increasing the efficiency of fluorescent concentrator systems. Sol Energy Mater Sol Cells 2009;93:176–82. https://doi.org/10.1016/j.solmat.2008.09.048
  • [28] Farrell DJ, van Sark WGJHM, Velthuijsen ST, Schropp REI. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators. Physica Status Solidi 2010;7:1045-48. https://doi.org/10.1002/pssc.200982866
  • [29] Hermann AM. Luminescent solar concentrators—A review. Sol Energy 1982;29:323–29. https://doi.org/10.1016/0038-092X(82)90247-X
  • [30] Griffini G, Levi M, Turri S. Thin-film luminescent solar concentrators: A device study towards rational design. Renew Energy 2015;78:288-94. https://doi.org/10.1016/j.renene.2015.01.009
  • [31] Krumer Z, van Sark WGJHM, Schropp REI, Donegá CDM. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration. Sol Energy Mater Sol Cells 2017;167:133-39. https://doi.org/10.1016/j.solmat.2017.04.010
  • [32] Mateen F, Oh H, Kang J, Lee SY, Hong SK. Improvement in the performance of luminescent solar concentrator using array of cylindrical optical fibers. Renew Energy 2019;138:691-96. https://doi.org/10.1016/j.renene.2019.02.021
  • [33] Rafiee M, Chandra S, Ahmed H, McCormack SJ. An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Optical Materials 2019;91:212-27. https://doi.org/10.1016/j.optmat.2019.01.007
  • [34] Sahin D, Ilan B, Kelley DF. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J App Phys 2011;110:033108. https://doi.org/10.1063/1.3619809
  • [35] Burgers AR, Slooff LH, Kinderman R, van Roosmalen JAM. Modeling of luminescent concentrators by ray-tracing. Proc. 20th European Photovoltaic Sol Energy Conf. 2005, p. 394-7.
  • [36] Leow SW, Corrado C, Osborn M, Isaacson M, Alers G, Carter SA. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J App Phys 2013;113:214510.
  • [37] Carrascosa M, Unamuno S, Agullo-Lopez F. Monte Carlo simulation of the performance of PMMA luminescent solar collectors. App Opt 1983; 22: 3236-41. https://doi.org/10.1364/AO.22.003236
  • [38] Green AP. Optical Properties of Luminescent Solar Concentrators: PhD Thesis. The University of Sheffield, England. 2014
  • [39] Green MA. Solar cell fill factors: General graph and empirical expressions. Solid State Electronics 1981;24:788 – 89. https://doi.org/10.1016/0038-1101(81)90062-9
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

G. Gopi This is me

T.j. Sarvoththama Jothi‬ This is me 0000-0002-9674-9045

S. Kumaravel This is me 0000-0002-3795-7768

Publication Date February 1, 2021
Submission Date April 8, 2019
Published in Issue Year 2021

Cite

APA Gopi, G., Jothi‬, T. S., & Kumaravel, S. (2021). EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR. Journal of Thermal Engineering, 7(2), 240-255. https://doi.org/10.18186/thermal.872184
AMA Gopi G, Jothi‬ TS, Kumaravel S. EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR. Journal of Thermal Engineering. February 2021;7(2):240-255. doi:10.18186/thermal.872184
Chicago Gopi, G., T.j. Sarvoththama Jothi‬, and S. Kumaravel. “EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR”. Journal of Thermal Engineering 7, no. 2 (February 2021): 240-55. https://doi.org/10.18186/thermal.872184.
EndNote Gopi G, Jothi‬ TS, Kumaravel S (February 1, 2021) EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR. Journal of Thermal Engineering 7 2 240–255.
IEEE G. Gopi, T. S. Jothi‬, and S. Kumaravel, “EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 240–255, 2021, doi: 10.18186/thermal.872184.
ISNAD Gopi, G. et al. “EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR”. Journal of Thermal Engineering 7/2 (February 2021), 240-255. https://doi.org/10.18186/thermal.872184.
JAMA Gopi G, Jothi‬ TS, Kumaravel S. EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR. Journal of Thermal Engineering. 2021;7:240–255.
MLA Gopi, G. et al. “EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 240-55, doi:10.18186/thermal.872184.
Vancouver Gopi G, Jothi‬ TS, Kumaravel S. EFFECT OF DYE CONCENTRATION ON PATTERNED LUMINESCENT SOLAR CONCENTRATOR. Journal of Thermal Engineering. 2021;7(2):240-55.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering