Research Article
BibTex RIS Cite
Year 2021, , 623 - 634, 01.03.2021
https://doi.org/10.18186/thermal.888481

Abstract

References

  • [1] Dal Magro F, Meneghetti A, Nardin G, Savino S. Enhancing energy recovery in the steel industry: matching continuous charge with off-gas variability smoothing. Energy Convers Manage 2015; 104:78–89. doi.org/10.1016/j.enconman.2015.05.012.
  • [2] Kirschen M, Velikorodov V, Pfeifer H. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces. Energy 2006; 31:2926–39. doi.org/10.1016/j.energy.2005.12.006.
  • [3] Horia A, Costin C, Sorin G. Power Quality and Electrical Arc Furnaces. ISBN: 978-953-307-180-0, InTech Open 2011; 77-100, doi: 10.5772/15996.
  • [4] Math H Bollen, Irene Yu-Hua Gu. Signal Processing of Power Quality Disturbances, New York; Wiley-Interscience; 2006. doi:10.1002/0471931314
  • [5] Hooshmand R, Esfahani M. Optimal design of TCR/FC in electric arc furnaces for power quality improvement in power systems. Leonardo Electronic Journal of Practices and Technologies 2009; 15:31-50.
  • [6] Lazaroiu C, Zaninelli D. DC arc furnace modeling for power quality analysis. Scientific Bulletin of Politehnica, University of Bucharest 2010; C72 :56-62.
  • [7] Makarov A, Sukolov A. Electric, ecometric and thermal parameters of the arcs glowing in metal vapor. Elektrometallurigiya 2009; 11:19-24.
  • [8] Makarov A, Rybakova V, Galicheva M. Electromagnetism and the arc efficiency of electric arc steel melting furnaces. Journal of Electromagnetic Analysis and Applications 2014; 6:184 – 192. doi: 10.4236/jemaa.2014.67018.
  • [9] Karel V, Andrew K, Kyllo F, Bart B, Patrick W. Furnace Cooling technology in pyrometallurgical processes. Sohn International Symposium Advanced Processing of Metals and Materials 2006; 4:139-154.
  • [10] Erfan K, Alireza R, Marc ARosen, ZabihollahA, Omid A, Amir M. Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace. EnergyConversion and Management 2017; 148:43–56. doi.org/10.1016/j.enconman.2017.05.057.
  • [11] Chirattananon S, Gao Z. A model for the performance evaluation of the operation of electric arc furnace. Energy Conversion and Management 1996; 37:161–6. doi.org/10.1016/0196-8904(95)00173-B.
  • [12] Afshin G, Mombeni E, Hajidavalloo, Behbahani N. Transient simulation of conjugate heat transfer in the roof cooling panel of an electric arc furnace. Applied Thermal Engineering 2016; 98:80-87. doi.org/10.1016/j.applthermaleng.2015.12.004.
  • [13] Bisio G, Rubatto G, Martini R. Heat transfer, energy saving and pollution control in UHP electric-arc furnaces. Energy 2000; 25:1047–66. doi.org/10.1016/S0360-5442(00)00037-2.
  • [14] Nikolov M. Research on the impact of amplitude of vibrations on electrical parameters of vibroarc weld overlay in Argon. Acta Technologica Agriculturae 2015; 2:46-48. doi: 10.1515/ata-2015-0010.
  • [15] Tsujimura Y, Tanaka M. Analysis of behavior of arc plasma conditions in MIG welding with metal transfer – visualization o phenomena of welding arc by imaging spectroscopy. Quarterly Journal of The Japan Welding Society 2012; 30:288-297. doi.org/10.2207/qjjws.30.288.
  • [16] Murphy A. A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chemistry and Plasma Processing 2015; 35:471-489. doi.org/10.1007/s11090-015-9620-2.
  • [17] Choudhary M. Three-dimensional mathematical model for flow and heat transfer in electric glass furnace. Heat Transfer Engineering 1985; 6:55-65. doi.org/10.1080/01457638508939639.
  • [18] Yu J, Zhan M. Modeling and experiments for heat transfer process in pulverized coal-firing furnace with two-dimensional radiation characteristics. Heat Transfer Engineering 2009; 30:988-997. doi.org/ 10.1080/01457630902837475.
  • [19] Hiraoka K, Shiwaku T, Ohj T. Temperature distributions of gas tungsten Arc plasma by spectroscopic methods. Quarterly Journal of The Japan Welding Society 1996; 14:641-648. doi: 10.2207/qjjws.29.274
  • [20] Nomura K, Kishi T, Shirai K, Hirata Y, Kataoka K. Temperature measurement of asymmetrical pulsed TIG arc plasma by multidirectional monochromatic imaging method. Welding in the World 2015; 59:283-293. doi.org/10.1007/s40194-014-0211-2.
  • [21] Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P. Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. Journal of Physics D: Applied Physics 2013; 46:224009. doi.org/10.1088/0022-3727/46/22/224009.
  • [22] Shigeta M, Nakanishi S, Tanaka M, Murphy A. Analysis of dynamic plasma behaviors in gas metal arc welding by imaging spectroscopy. Quarterly Journal of The Japan Welding Society 2015; 33:118-125. doi.org/10.2207/qjjws.33.118.
  • [23] Bachmann M, Avilov V, Gumenyuk A. Rethmeier M. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. Journal of Materials Processing Technology 2014; 214:578-591. doi.org/10.1016/j.jmatprotec.2013.11.013.
  • [24] Ogino Y, Nomura K, Hirata Y. Numerical analysis of arc plasma behavior in groove welding with 3D TIG arc model.Welding Internationall 2013; 27:867-873. doi: 10.1080/09507116.2012.715876.
  • [25] Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M. Study for the arc phenomena of TIG-MIG hybrid welding process by 3D numerical analysis model. Quarterly Journal of The Japan Welding Society 2012; 30:323-330. doi.org/10.2207/qjjws.30.323.
  • [26] Üstündag Ö, Avilov V, Gumenyuk A, Rethmeier M. Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support. Journal of Physics:Conf. Series 2018; 1109 012015. doi :10.1088/1742-6596/1109/1/012015.
  • [27] Contreras-Serna J, Rivera-Solorio C, Herrera-Garcia M. Study of heat transfer in a tubular-panel cooling system in the wall of an electric arc furnace. Applied Thermal Engineering 2019; 148:43-56. doi.org/10.1016/j.applthermaleng.2018.10.134.
  • [28] Optiz F, Treffinger P, Wollenstein J. Modeling of radiative heat transfer in an electric arc furnace. Metallurgical and Materials Transactions B 2017; 48:3301-3315. doi.org/10.1007/s11663-017-1078-6.
  • [29] Khodabandeh E, Ghaderi M, Afzalabadi A, Rouboa A, Salarifard A. Parametric study of heat transfer in an electric arc furnace and cooling system. Applied Thermal Engineering 2017; 123:1190-1200. doi.org/10.1016/j.applthermaleng.2017.05.193.
  • [30] Mehrabian R, Shiehnejadhesar A, Scharler R. Application of numerical modelling to biomass grate furnaces. Journal of Thermal Engineering 2015; 1:550-556. doi:10.18186/jte.85878.
  • [31] Sert S, Balkan F. Determination of avoidable and unavoidable exergy analysis destruction of furnace-air preheater coupled system in petrochemical plant. Journal of Thermal Engineering 2016; 2:794-800.
  • [32] Baehr, H D, Stephan K. Heat and Mass Transfer, Springer; 2006. doi:10.1007/3-540-29527-5.

NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE

Year 2021, , 623 - 634, 01.03.2021
https://doi.org/10.18186/thermal.888481

Abstract

One of the major problems in electric arc furnace is the high temperature which results in thermal stresses and cracks within the material of the furnace surrounding walls. An effective cooling technique is needed to avoid such problems. For this purpose, a novel roof configuration of an electric arc furnace is used to provide efficient cooling to reduce the temperature in the roof material. The roof consists of two solid materials, namely, copper and alumina brick. The roof cooling is achieved by a water circulation within the roof. A numerical model using finite element method was implemented to solve the heat conduction equation with the complicated boundary conditions to find out the effects of using brick material with geometrical size variations for different values of thermal conductivity on the temperature distribution within the roof. The results showed that the decrease in brick material thermal conductivity resulted in a significant decrease in the top surface temperature of the furnace roof. The results showed that rectangular brick material is the best option in the roof to keep it at low temperature.

References

  • [1] Dal Magro F, Meneghetti A, Nardin G, Savino S. Enhancing energy recovery in the steel industry: matching continuous charge with off-gas variability smoothing. Energy Convers Manage 2015; 104:78–89. doi.org/10.1016/j.enconman.2015.05.012.
  • [2] Kirschen M, Velikorodov V, Pfeifer H. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces. Energy 2006; 31:2926–39. doi.org/10.1016/j.energy.2005.12.006.
  • [3] Horia A, Costin C, Sorin G. Power Quality and Electrical Arc Furnaces. ISBN: 978-953-307-180-0, InTech Open 2011; 77-100, doi: 10.5772/15996.
  • [4] Math H Bollen, Irene Yu-Hua Gu. Signal Processing of Power Quality Disturbances, New York; Wiley-Interscience; 2006. doi:10.1002/0471931314
  • [5] Hooshmand R, Esfahani M. Optimal design of TCR/FC in electric arc furnaces for power quality improvement in power systems. Leonardo Electronic Journal of Practices and Technologies 2009; 15:31-50.
  • [6] Lazaroiu C, Zaninelli D. DC arc furnace modeling for power quality analysis. Scientific Bulletin of Politehnica, University of Bucharest 2010; C72 :56-62.
  • [7] Makarov A, Sukolov A. Electric, ecometric and thermal parameters of the arcs glowing in metal vapor. Elektrometallurigiya 2009; 11:19-24.
  • [8] Makarov A, Rybakova V, Galicheva M. Electromagnetism and the arc efficiency of electric arc steel melting furnaces. Journal of Electromagnetic Analysis and Applications 2014; 6:184 – 192. doi: 10.4236/jemaa.2014.67018.
  • [9] Karel V, Andrew K, Kyllo F, Bart B, Patrick W. Furnace Cooling technology in pyrometallurgical processes. Sohn International Symposium Advanced Processing of Metals and Materials 2006; 4:139-154.
  • [10] Erfan K, Alireza R, Marc ARosen, ZabihollahA, Omid A, Amir M. Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace. EnergyConversion and Management 2017; 148:43–56. doi.org/10.1016/j.enconman.2017.05.057.
  • [11] Chirattananon S, Gao Z. A model for the performance evaluation of the operation of electric arc furnace. Energy Conversion and Management 1996; 37:161–6. doi.org/10.1016/0196-8904(95)00173-B.
  • [12] Afshin G, Mombeni E, Hajidavalloo, Behbahani N. Transient simulation of conjugate heat transfer in the roof cooling panel of an electric arc furnace. Applied Thermal Engineering 2016; 98:80-87. doi.org/10.1016/j.applthermaleng.2015.12.004.
  • [13] Bisio G, Rubatto G, Martini R. Heat transfer, energy saving and pollution control in UHP electric-arc furnaces. Energy 2000; 25:1047–66. doi.org/10.1016/S0360-5442(00)00037-2.
  • [14] Nikolov M. Research on the impact of amplitude of vibrations on electrical parameters of vibroarc weld overlay in Argon. Acta Technologica Agriculturae 2015; 2:46-48. doi: 10.1515/ata-2015-0010.
  • [15] Tsujimura Y, Tanaka M. Analysis of behavior of arc plasma conditions in MIG welding with metal transfer – visualization o phenomena of welding arc by imaging spectroscopy. Quarterly Journal of The Japan Welding Society 2012; 30:288-297. doi.org/10.2207/qjjws.30.288.
  • [16] Murphy A. A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chemistry and Plasma Processing 2015; 35:471-489. doi.org/10.1007/s11090-015-9620-2.
  • [17] Choudhary M. Three-dimensional mathematical model for flow and heat transfer in electric glass furnace. Heat Transfer Engineering 1985; 6:55-65. doi.org/10.1080/01457638508939639.
  • [18] Yu J, Zhan M. Modeling and experiments for heat transfer process in pulverized coal-firing furnace with two-dimensional radiation characteristics. Heat Transfer Engineering 2009; 30:988-997. doi.org/ 10.1080/01457630902837475.
  • [19] Hiraoka K, Shiwaku T, Ohj T. Temperature distributions of gas tungsten Arc plasma by spectroscopic methods. Quarterly Journal of The Japan Welding Society 1996; 14:641-648. doi: 10.2207/qjjws.29.274
  • [20] Nomura K, Kishi T, Shirai K, Hirata Y, Kataoka K. Temperature measurement of asymmetrical pulsed TIG arc plasma by multidirectional monochromatic imaging method. Welding in the World 2015; 59:283-293. doi.org/10.1007/s40194-014-0211-2.
  • [21] Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P. Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. Journal of Physics D: Applied Physics 2013; 46:224009. doi.org/10.1088/0022-3727/46/22/224009.
  • [22] Shigeta M, Nakanishi S, Tanaka M, Murphy A. Analysis of dynamic plasma behaviors in gas metal arc welding by imaging spectroscopy. Quarterly Journal of The Japan Welding Society 2015; 33:118-125. doi.org/10.2207/qjjws.33.118.
  • [23] Bachmann M, Avilov V, Gumenyuk A. Rethmeier M. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. Journal of Materials Processing Technology 2014; 214:578-591. doi.org/10.1016/j.jmatprotec.2013.11.013.
  • [24] Ogino Y, Nomura K, Hirata Y. Numerical analysis of arc plasma behavior in groove welding with 3D TIG arc model.Welding Internationall 2013; 27:867-873. doi: 10.1080/09507116.2012.715876.
  • [25] Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M. Study for the arc phenomena of TIG-MIG hybrid welding process by 3D numerical analysis model. Quarterly Journal of The Japan Welding Society 2012; 30:323-330. doi.org/10.2207/qjjws.30.323.
  • [26] Üstündag Ö, Avilov V, Gumenyuk A, Rethmeier M. Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support. Journal of Physics:Conf. Series 2018; 1109 012015. doi :10.1088/1742-6596/1109/1/012015.
  • [27] Contreras-Serna J, Rivera-Solorio C, Herrera-Garcia M. Study of heat transfer in a tubular-panel cooling system in the wall of an electric arc furnace. Applied Thermal Engineering 2019; 148:43-56. doi.org/10.1016/j.applthermaleng.2018.10.134.
  • [28] Optiz F, Treffinger P, Wollenstein J. Modeling of radiative heat transfer in an electric arc furnace. Metallurgical and Materials Transactions B 2017; 48:3301-3315. doi.org/10.1007/s11663-017-1078-6.
  • [29] Khodabandeh E, Ghaderi M, Afzalabadi A, Rouboa A, Salarifard A. Parametric study of heat transfer in an electric arc furnace and cooling system. Applied Thermal Engineering 2017; 123:1190-1200. doi.org/10.1016/j.applthermaleng.2017.05.193.
  • [30] Mehrabian R, Shiehnejadhesar A, Scharler R. Application of numerical modelling to biomass grate furnaces. Journal of Thermal Engineering 2015; 1:550-556. doi:10.18186/jte.85878.
  • [31] Sert S, Balkan F. Determination of avoidable and unavoidable exergy analysis destruction of furnace-air preheater coupled system in petrochemical plant. Journal of Thermal Engineering 2016; 2:794-800.
  • [32] Baehr, H D, Stephan K. Heat and Mass Transfer, Springer; 2006. doi:10.1007/3-540-29527-5.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mamdouh El Haj Assad This is me 0000-0001-6311-7925

Khalil Khanafer This is me 0000-0002-7765-6097

Ehab Hussein Bani Hani This is me 0000-0002-7102-7679

Bashria Yousef This is me 0000-0002-9569-5903

Publication Date March 1, 2021
Submission Date January 29, 2019
Published in Issue Year 2021

Cite

APA El Haj Assad, M., Khanafer, K., Hani, E. H. B., Yousef, B. (2021). NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE. Journal of Thermal Engineering, 7(3), 623-634. https://doi.org/10.18186/thermal.888481
AMA El Haj Assad M, Khanafer K, Hani EHB, Yousef B. NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE. Journal of Thermal Engineering. March 2021;7(3):623-634. doi:10.18186/thermal.888481
Chicago El Haj Assad, Mamdouh, Khalil Khanafer, Ehab Hussein Bani Hani, and Bashria Yousef. “NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE”. Journal of Thermal Engineering 7, no. 3 (March 2021): 623-34. https://doi.org/10.18186/thermal.888481.
EndNote El Haj Assad M, Khanafer K, Hani EHB, Yousef B (March 1, 2021) NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE. Journal of Thermal Engineering 7 3 623–634.
IEEE M. El Haj Assad, K. Khanafer, E. H. B. Hani, and B. Yousef, “NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 623–634, 2021, doi: 10.18186/thermal.888481.
ISNAD El Haj Assad, Mamdouh et al. “NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE”. Journal of Thermal Engineering 7/3 (March 2021), 623-634. https://doi.org/10.18186/thermal.888481.
JAMA El Haj Assad M, Khanafer K, Hani EHB, Yousef B. NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE. Journal of Thermal Engineering. 2021;7:623–634.
MLA El Haj Assad, Mamdouh et al. “NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 623-34, doi:10.18186/thermal.888481.
Vancouver El Haj Assad M, Khanafer K, Hani EHB, Yousef B. NUMERICAL INVESTIGATION OF HEAT TRANSFER WATER-COOLED ROOF IN AN ELECTRIC ARC FURNACE. Journal of Thermal Engineering. 2021;7(3):623-34.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering