Research Article
BibTex RIS Cite

NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING

Year 2021, , 650 - 665, 01.03.2021
https://doi.org/10.18186/thermal.890073

Abstract

In the present paper, numerical simulation is carried out to investigate turbulent flow structure and heat transfer analysis in a two-dimensional horizontal plane channel, contains square blocks arranged in tandem or side by side arrangement. The k-ε model is used to describe turbulence phenomena, and governing equations are solved by a finite volume method, with SIMPLEC algorithm is applied for the coupling of the velocity-pressure variables. The power-law scheme is used for the discretization of the convective terms in the momentum equations. Presented results illustrates the effect of the transverse (GT) and longitudinal (GL) spacing between the blocks on flow structure and heat transfer for a wide range of Reynolds number (104≤ Re ≤5×104). Numerical results show a very good agreement in comparison with available data in the literature.

References

  • [1] Incropera F.P. Convection heat transfer in electronic equipment cooling. Journal of heat transfer, vol. 110, 1988, p. 1097-1111. https://doi.org/10.1115/1.3250613,
  • [2] Peterson G.P, Ortega A. Thermal control of electronic equipment and devices. Advances in heat transfer, vol .20, 1990, p.181-314. https://doi.org/10.1016/S0065-2717(08)7002
  • [3] Young T.J, Vafai, K. Convective cooling of a heated obstacle in a channel. International journal of heat and mass transfer, vol. 41, 1998, p. 3131-3148. https://doi.org/10.1016/S0017-9310(97)00323-2.
  • [4] Sheikholeslami M, Haq Rizwan-ul, Shafee A, Li Z, Elaraki Y.G, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. International Journal of Heat and Mass Transfer, vol.135, 2019, p.470-478. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.003.
  • [5] Wu H.W, Perng S.W. Turbulent flow and heat transfer enhancement of mixed convection over heated blocks in a channel. International Journal of numerical methods for heat and fluid flow, vol.15, 2005, p.205-225.https://doi.org/10.1108/09615530510578456.
  • [6] Peng S.W, Wu H.W. Numerical investigation of mixed convective heat transfer for unsteady turbulent flow over heated blocks in a horizontal channel. International journal of thermal sciences, vol. 47, 2008, p.620-632.https://doi.org/10.1016/j.ijthermalsci.2007.04.003.
  • [7] Bouttout A, Benissaad S, Bessaïh R. Numerical study of forced convection in a horizontal channel with heated blocks due to oscillation of incoming flow. Numerical heat transfer, vol. 65, 2014, p.584-600. https://doi.org/10.1080/10407782.2013.836013.
  • [8] Yemenici, O., Firatoglu, Z.A. Tansitional boundary layer flow and heat transfer over blocked surfaces with influence of free stream velocity and block height. Heat and mass transfer, vol.49, 2013, p.1637-1646. DOI: 10.1007/s00231-013-1208.
  • [9] Nakagawa S, Senda M, Hiraide A, Kikkawa S. Heat transfer characteristics in a channel flow with a rectangular cylinder. JSME International journal series B fluids and thermal engineering, vol.42, 1999, p.188-196. https://doi.org/10.1016/j.ijthermalsci.2016.01.006.
  • [10] Kim D.H, Yang K.S, Senda M. Large-eddy simulation of turbulent flow past a square cylinder confined in a channel. Computers and Fluids, vol.33, 2004, p. 81-96. https://doi.org/10.1016/S0045-7930(03)00040-9.
  • [11] Parthasarathy R.K., Mahadevan S, Marimuthu U. Numerical investigation of forced convection conjugate heat transfer from square cylinders placed in a confined channel covered by solid wall. Heat Transfer-Asian Research, vol.46, 2015, p. 91-110. https://doi.org/10.1002/htj.21200.
  • [12] Valencia A, Cid M. Turbulent unsteady flow and heat transfer in channels with periodically mounted square bars. International journal of heat and mass transfer, vol.45, 2002, p.1661-1673.
  • [13] Valencia A. Heat transfer enhancement in a channel with a built-in square cylinder. International communications in heat and mass transfer, vol. 22, 1995, p. 47-58. https://doi.org/10.1016/0735-1933(94)00051-L.
  • [14] Frank R, Rodi W. Calculation of vortex shedding past a square cylinder with various turbulence models, turbulent shear flows, vol.8,1993, p.189-204. https://doi.org/10.1016/0142-727X(96)00033-1
  • [15] Kumar, A., Dhiman, A.K., Bharti, R.P. Power-law flow and heat transfer over an inclined square bluff body: effect of blockage ratio. Heat transfer-Asian Research, vol.43, 2014, p. 167-196.https://doi.org/10.1002/htj.21071.
  • [16] Bouchenafa R, Saim R, Abboudi S. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square from. Heat and mass transfer, vol.51, 2015, p. 1301-1311. doi: 10.1007/s00231-015-1496-4
  • 17] Barman A, Kumar Dash S. Effect of obstacle positions for turbulent forced convection heat transfer and fluid flow over a double forward facing step, International Journal of Thermal Sciences, vol.134, 2018, p.116-128.https://doi.org/10.1016/j.ijthermalsci.2018.08.009
  • [18] Zhang, W., Chen, X., Yang, H., Liang, H., Wei, Y. Forced convection for flow across two tandem cylinders with rounded corners in a channel, International Journal of Heat and Mass Transfer, vol.130, 2019, p. 1053-1069. doi: 10.1016/j.ijheatmasstransfer.2018.10.125
  • [19] Zhan W, Yang H, Dou H, Zhu Zuchao. Forced convection of flow past two tandem rectangular cylinders in a channel. Numerical Heat Transfer. A-Appl, vol. 72, 2017, p. 89-106. https://doi.org/10.1080/10407782.2017.1353384
  • [20] M Sheikholeslam, M Jafaryar, Ahmad Shafee, Zhixiong Li, Rizwan-ul Hag. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation, International Journal of Heat and Mass Transfer. Vol.136, 2019, p. 1233-1240. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.091
  • [21] M. Sheikholeslam, M. Jafaryar, Mohammadali H, Ahmad Shafee, Zhixiong Li, Truong Khang Nguyen, Mohsen Bakouri. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. International Journal of Heat and Mass Transfer, vol.137, 2019, p.1290-1300. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.030
  • [22] M. Sheikholeslami, Rizwan-ul Haq, Ahmad Shafee, Zhixiong Li. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. International Journal of Heat and Mass Transfer, vol.130, 2019, p. 1322-1342. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.020
  • [23] Launder B.E, Spalding D.B. The numerical computation of turbulent flows, Computer Methods in applied mechanics and engineering. Vol. 3, 1974, p. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  • [24] Patankar S.V, Numerical heat transfer and fluid flow. CRC press, 1980.
  • [25] Saim R, Benzenine H, Oztop H.F, Al-Salem K.. Turbulent flow and heat transfer enhancement of forced convection over heated baffles in a channel. International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23, 2013, p.613-633. https://doi.org/10.1108/09615531311323773
  • [26] Nasiruddin M.H, Siddiqui K.. Heat Transfer Augmentation in a Heat Exchanger Tube using a Baffle, International journal of Heat and Fluid Flow, vol.28, 2007, p. 318-328. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.020.
  • [27] Sripattanapipat P.S. Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, International Communications in heat & Mass Transfer, vol.36, 2009, p.32-38. https://doi.org/10.1016/j.icheatmasstransfer.2008.09.008
  • [28] Alvarez J, Pap M, Valencia A. Turbulent Heat Transfer in a Channel with Bars in Tandem and in Side by Side Arrangement, International journal of numerical methods for heat and fluid flow, vol.10, 2000, p. 877-895.doi:10.1108/09615530010359157
  • [29] Belhadj A, Bouchenafa R, Saim R. Numerical investigation of forced convection of nanofluid in microchannels heat sinks, Journal of thermal engineering, vol.5, 2018, p.2263-2273. https://doi.org/10.1016/j.ijthermalsci.2013.07.020
Year 2021, , 650 - 665, 01.03.2021
https://doi.org/10.18186/thermal.890073

Abstract

References

  • [1] Incropera F.P. Convection heat transfer in electronic equipment cooling. Journal of heat transfer, vol. 110, 1988, p. 1097-1111. https://doi.org/10.1115/1.3250613,
  • [2] Peterson G.P, Ortega A. Thermal control of electronic equipment and devices. Advances in heat transfer, vol .20, 1990, p.181-314. https://doi.org/10.1016/S0065-2717(08)7002
  • [3] Young T.J, Vafai, K. Convective cooling of a heated obstacle in a channel. International journal of heat and mass transfer, vol. 41, 1998, p. 3131-3148. https://doi.org/10.1016/S0017-9310(97)00323-2.
  • [4] Sheikholeslami M, Haq Rizwan-ul, Shafee A, Li Z, Elaraki Y.G, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. International Journal of Heat and Mass Transfer, vol.135, 2019, p.470-478. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.003.
  • [5] Wu H.W, Perng S.W. Turbulent flow and heat transfer enhancement of mixed convection over heated blocks in a channel. International Journal of numerical methods for heat and fluid flow, vol.15, 2005, p.205-225.https://doi.org/10.1108/09615530510578456.
  • [6] Peng S.W, Wu H.W. Numerical investigation of mixed convective heat transfer for unsteady turbulent flow over heated blocks in a horizontal channel. International journal of thermal sciences, vol. 47, 2008, p.620-632.https://doi.org/10.1016/j.ijthermalsci.2007.04.003.
  • [7] Bouttout A, Benissaad S, Bessaïh R. Numerical study of forced convection in a horizontal channel with heated blocks due to oscillation of incoming flow. Numerical heat transfer, vol. 65, 2014, p.584-600. https://doi.org/10.1080/10407782.2013.836013.
  • [8] Yemenici, O., Firatoglu, Z.A. Tansitional boundary layer flow and heat transfer over blocked surfaces with influence of free stream velocity and block height. Heat and mass transfer, vol.49, 2013, p.1637-1646. DOI: 10.1007/s00231-013-1208.
  • [9] Nakagawa S, Senda M, Hiraide A, Kikkawa S. Heat transfer characteristics in a channel flow with a rectangular cylinder. JSME International journal series B fluids and thermal engineering, vol.42, 1999, p.188-196. https://doi.org/10.1016/j.ijthermalsci.2016.01.006.
  • [10] Kim D.H, Yang K.S, Senda M. Large-eddy simulation of turbulent flow past a square cylinder confined in a channel. Computers and Fluids, vol.33, 2004, p. 81-96. https://doi.org/10.1016/S0045-7930(03)00040-9.
  • [11] Parthasarathy R.K., Mahadevan S, Marimuthu U. Numerical investigation of forced convection conjugate heat transfer from square cylinders placed in a confined channel covered by solid wall. Heat Transfer-Asian Research, vol.46, 2015, p. 91-110. https://doi.org/10.1002/htj.21200.
  • [12] Valencia A, Cid M. Turbulent unsteady flow and heat transfer in channels with periodically mounted square bars. International journal of heat and mass transfer, vol.45, 2002, p.1661-1673.
  • [13] Valencia A. Heat transfer enhancement in a channel with a built-in square cylinder. International communications in heat and mass transfer, vol. 22, 1995, p. 47-58. https://doi.org/10.1016/0735-1933(94)00051-L.
  • [14] Frank R, Rodi W. Calculation of vortex shedding past a square cylinder with various turbulence models, turbulent shear flows, vol.8,1993, p.189-204. https://doi.org/10.1016/0142-727X(96)00033-1
  • [15] Kumar, A., Dhiman, A.K., Bharti, R.P. Power-law flow and heat transfer over an inclined square bluff body: effect of blockage ratio. Heat transfer-Asian Research, vol.43, 2014, p. 167-196.https://doi.org/10.1002/htj.21071.
  • [16] Bouchenafa R, Saim R, Abboudi S. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square from. Heat and mass transfer, vol.51, 2015, p. 1301-1311. doi: 10.1007/s00231-015-1496-4
  • 17] Barman A, Kumar Dash S. Effect of obstacle positions for turbulent forced convection heat transfer and fluid flow over a double forward facing step, International Journal of Thermal Sciences, vol.134, 2018, p.116-128.https://doi.org/10.1016/j.ijthermalsci.2018.08.009
  • [18] Zhang, W., Chen, X., Yang, H., Liang, H., Wei, Y. Forced convection for flow across two tandem cylinders with rounded corners in a channel, International Journal of Heat and Mass Transfer, vol.130, 2019, p. 1053-1069. doi: 10.1016/j.ijheatmasstransfer.2018.10.125
  • [19] Zhan W, Yang H, Dou H, Zhu Zuchao. Forced convection of flow past two tandem rectangular cylinders in a channel. Numerical Heat Transfer. A-Appl, vol. 72, 2017, p. 89-106. https://doi.org/10.1080/10407782.2017.1353384
  • [20] M Sheikholeslam, M Jafaryar, Ahmad Shafee, Zhixiong Li, Rizwan-ul Hag. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation, International Journal of Heat and Mass Transfer. Vol.136, 2019, p. 1233-1240. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.091
  • [21] M. Sheikholeslam, M. Jafaryar, Mohammadali H, Ahmad Shafee, Zhixiong Li, Truong Khang Nguyen, Mohsen Bakouri. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. International Journal of Heat and Mass Transfer, vol.137, 2019, p.1290-1300. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.030
  • [22] M. Sheikholeslami, Rizwan-ul Haq, Ahmad Shafee, Zhixiong Li. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. International Journal of Heat and Mass Transfer, vol.130, 2019, p. 1322-1342. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.020
  • [23] Launder B.E, Spalding D.B. The numerical computation of turbulent flows, Computer Methods in applied mechanics and engineering. Vol. 3, 1974, p. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  • [24] Patankar S.V, Numerical heat transfer and fluid flow. CRC press, 1980.
  • [25] Saim R, Benzenine H, Oztop H.F, Al-Salem K.. Turbulent flow and heat transfer enhancement of forced convection over heated baffles in a channel. International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23, 2013, p.613-633. https://doi.org/10.1108/09615531311323773
  • [26] Nasiruddin M.H, Siddiqui K.. Heat Transfer Augmentation in a Heat Exchanger Tube using a Baffle, International journal of Heat and Fluid Flow, vol.28, 2007, p. 318-328. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.020.
  • [27] Sripattanapipat P.S. Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, International Communications in heat & Mass Transfer, vol.36, 2009, p.32-38. https://doi.org/10.1016/j.icheatmasstransfer.2008.09.008
  • [28] Alvarez J, Pap M, Valencia A. Turbulent Heat Transfer in a Channel with Bars in Tandem and in Side by Side Arrangement, International journal of numerical methods for heat and fluid flow, vol.10, 2000, p. 877-895.doi:10.1108/09615530010359157
  • [29] Belhadj A, Bouchenafa R, Saim R. Numerical investigation of forced convection of nanofluid in microchannels heat sinks, Journal of thermal engineering, vol.5, 2018, p.2263-2273. https://doi.org/10.1016/j.ijthermalsci.2013.07.020
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kamal Amghar This is me 0000-0002-2509-8433

Publication Date March 1, 2021
Submission Date March 6, 2019
Published in Issue Year 2021

Cite

APA Amghar, K. (2021). NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING. Journal of Thermal Engineering, 7(3), 650-665. https://doi.org/10.18186/thermal.890073
AMA Amghar K. NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING. Journal of Thermal Engineering. March 2021;7(3):650-665. doi:10.18186/thermal.890073
Chicago Amghar, Kamal. “NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING”. Journal of Thermal Engineering 7, no. 3 (March 2021): 650-65. https://doi.org/10.18186/thermal.890073.
EndNote Amghar K (March 1, 2021) NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING. Journal of Thermal Engineering 7 3 650–665.
IEEE K. Amghar, “NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 650–665, 2021, doi: 10.18186/thermal.890073.
ISNAD Amghar, Kamal. “NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING”. Journal of Thermal Engineering 7/3 (March 2021), 650-665. https://doi.org/10.18186/thermal.890073.
JAMA Amghar K. NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING. Journal of Thermal Engineering. 2021;7:650–665.
MLA Amghar, Kamal. “NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 650-65, doi:10.18186/thermal.890073.
Vancouver Amghar K. NUMERICAL STUDY OF TURBULENT HEAT TRANSFER IN A HORIZONTAL CHANNEL PROVIDED WITH SQUARE BLOCKS: EFFECT OF THE INTER BLOCKS SPACING. Journal of Thermal Engineering. 2021;7(3):650-65.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering