Research Article
BibTex RIS Cite

A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH

Year 2021, , 700 - 714, 01.03.2021
https://doi.org/10.18186/thermal.890150

Abstract

The influence of installation and environmental parameters on dust particle deposition behavior on solar photovoltaic collectors were investigated using Computational Fluid Dynamics (CFD) simulation. Parameters including tilt, height of installation, dust particle size and wind speed were investigated. Modeling of wind flow on the building and the photovoltaic array was achieved using the Shear Stress Transport k-ω turbulence model. The discrete phase model was adopted for dust motion prediction and a model was developed to assess the impact of dust accumulation on the performance of the photovoltaic array. The study revealed that rooftop installations have less dust deposition unlike the ground-mounted installations. The wind flow characteristics on rooftop installations are greatly affected by the building while on ground mounted installations wind flow is only influenced by the tilt of the solar photovoltaic collector. Different tilt angles, wind speeds and particle sizes had different deposition characteristics. The lower impact velocities experienced on ground mounted Photovoltaic (PV) arrays resulted in more deposition for smaller sized (10µm) dust particles compared to the larger sized (50µm and 150µm) particles. On rooftop installations, dust particle size of 150µm had the most deposition at a velocity of 5m/s and hence it resulted in a 22.61% reduction in solar photovoltaic efficiency while the least reduction in efficiency of 1.32% was recorded at 15m/s and 10µm size dust particles. The tilt angles of 0o and 22.5o had large sized turbulent eddies compared to the tilt of 45o. The study revealed that ground mounted photovoltaic arrays had more dust deposition compared to rooftop mounted photovoltaics.

References

  • [1] S. A. M. Said, “Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors,” Applied Energy, vol. 37, no. 1, pp. 73–84, Jan. 1990, doi: 10.1016/0306-2619(90)90019-A.
  • [2] R. Siddiqui and U. Bajpai, Deviation in the performance of Solar Module under Climatic parameter as Ambient Temperature and Wind Velocity in Composite Climate, vol. 2. 2012.
  • [3] T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 698–733, 2013, doi:10.1016/j.rser.2012.12.065.
  • [4] Y. Jiang, L. Lu, A. R. Ferro, and G. Ahmadi, “Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces,” Solar Energy, vol. 159, no. April 2017, pp. 1031–1036, 2018, doi: 10.1016/j.solener.2017.08.083.
  • [5] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3192–3203, 2006, doi: 10.1016/j.enconman.2006.02.014.
  • [6] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920–2925, 2012, doi: 10.1016/j.rser.2012.02.012.
  • [7] C. Chen, H. Chen, C. H. Hsueh, and M. Chang, “Photovoltaic module performance and soiling analysis for field environment,” 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, no. 1, 2015, doi: 10.1109/PVSC.2015.7355983.
  • [8] A. Baras, R. K. Jones, A. Alqahtani, M. Alodan, and K. Abdullah, “Measured soiling loss and its economic impact for PV plants in central Saudi Arabia,” in 2016 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, Dec. 2016, pp. 1–7, doi: 10.1109/SASG.2016.7849657.
  • [1] S. A. M. Said, “Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors,” Applied Energy, vol. 37, no. 1, pp. 73–84, Jan. 1990, doi: 10.1016/0306-2619(90)90019-A.
  • [2] R. Siddiqui and U. Bajpai, Deviation in the performance of Solar Module under Climatic parameter as Ambient Temperature and Wind Velocity in Composite Climate, vol. 2. 2012.
  • [3] T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 698–733, 2013, doi: 10.1016/j.rser.2012.12.065.
  • [4] Y. Jiang, L. Lu, A. R. Ferro, and G. Ahmadi, “Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces,” Solar Energy, vol. 159, no. April 2017, pp. 1031–1036, 2018, doi: 10.1016/j.solener.2017.08.083.
  • [5] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3192–3203, 2006, doi: 10.1016/j.enconman.2006.02.014.
  • [6] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920–2925, 2012, doi: 10.1016/j.rser.2012.02.012.
  • [7] C. Chen, H. Chen, C. H. Hsueh, and M. Chang, “Photovoltaic module performance and soiling analysis for field environment,” 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, no. 1, 2015, doi: 10.1109/PVSC.2015.7355983.
  • [8] A. Baras, R. K. Jones, A. Alqahtani, M. Alodan, and K. Abdullah, “Measured soiling loss and its economic impact for PV plants in central Saudi Arabia,” in 2016 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, Dec. 2016, pp. 1–7, doi: 10.1109/SASG.2016.7849657.
  • [9] R. Appels et al., “Effect of soiling on photovoltaic modules,” Solar Energy, vol. 96, pp. 283–291, 2013, doi: 10.1016/j.solener.2013.07.017.
  • [10] K. Chiteka, R. Arora, S. N. Sridhara, and C. C. Enweremadu, “Optimizing wind barrier and photovoltaic array configuration in soiling mitigation,” Renewable Energy, vol. 163, pp. 225–236, Jan. 2021, doi: 10.1016/j.renene.2020.08.155.
  • [11] A. M. Pavan, A. Mellit, D. De Pieri, and S. A. Kalogirou, “A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants,” Applied Energy, vol. 108, pp. 392–401, Aug. 2013, doi: 10.1016/j.apenergy.2013.03.023.
  • [12] A. M. El-Nashar, “The effect of dust accumulation on the performance of evacuated tube collectors,” Solar Energy, vol. 53, no. 1, pp. 105–115, Jul. 1994, doi: 10.1016/S0038-092X(94)90610-6.
  • [13] M. J. Adinoyi and S. A. M. Said, “Effect of dust accumulation on the power outputs of solar photovoltaic modules,” Renewable Energy, vol. 60, pp. 633–636, 2013, doi: 10.1016/j.renene.2013.06.014 Technical note.
  • [14] I. I. Mailuha JT, Murase H, “Knowledge engineering-based studies on solar energy utilization in Kenya,” Agriculture Mechanization in Asia, Africa, and Latin America, vol. 25, pp. 13–6, 1994.
  • [15] D. Goossens, Z. Y. Offer, and A. Zangvil, “Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors,” Solar Energy, vol. 50, no. 1, pp. 75–84, 1993, doi: 10.1016/0038-092X(93)90009-D.
  • [16] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3124–3131, 2010, doi: 10.1016/j.rser.2010.07.065.
  • [17] K. Chiteka, R. Arora, and V. Jain, “CFD Prediction of dust deposition and installation parametric optimisation for soiling mitigation in non-tracking solar PV modules,” International Journal of Ambient Energy, pp. 1–14, Mar. 2019, doi: 10.1080/01430750.2019.1594373.
  • [18] J. K. Kaldellis and M. Kapsali, “Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements,” Energy, vol. 36, no. 8, pp. 5154–5161, Aug. 2011, doi: 10.1016/j.energy.2011.06.018.
  • [19] K. Chiteka, S. N. Sridhara, and R. Arora, “Numerical investigation of installation and environmental parameters on soiling of roof-mounted solar photovoltaic array,” Cogent Engineering, vol. 6, no. 1, Jul. 2019, doi: 10.1080/23311916.2019.1649007.
  • [20] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1307–1316, 2016, doi: 10.1016/j.rser.2016.01.044.
  • [21] M. S. El-Shobokshy and F. M. Hussein, “Effect of dust with different physical properties on the performance of photovoltaic cells,” Solar Energy, vol. 51, no. 6, pp. 505–511, Dec. 1993, doi: 10.1016/0038-092X(93)90135-B.
  • [22] H. Jiang, L. Lu, and K. Sun, “Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules,” Atmospheric Environment, vol. 45, no. 25, pp. 4299–4304, 2011, doi: 10.1016/j.atmosenv.2011.04.084.
  • [23] M. Piliougine et al., “Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates,” Applied Energy, vol. 112, pp. 626–634, 2013, doi: 10.1016/j.apenergy.2013.01.048.
  • [24] T. Lorenz, E. Klimm, and K.-A. Weiss, “Soiling and Anti-soiling Coatings on Surfaces of Solar Thermal Systems – Featuring an Economic Feasibility Analysis,” Energy Procedia, vol. 48, pp. 749–756, Jan. 2014, doi: 10.1016/j.egypro.2014.02.087.
  • [25] M. A. M. L. de Jesus, G. Timò, C. Agustín-Sáenz, I. Braceras, M. Cornelli, and A. de M. Ferreira, “Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence,” Solar Energy Materials and Solar Cells, vol. 185, pp. 517–523, Oct. 2018, doi: 10.1016/j.solmat.2018.05.036.
  • [26] G. Polizos et al., “Anti-soiling and highly transparent coatings with multi-scale features,” Solar Energy Materials and Solar Cells, vol. 188, pp. 255–262, Dec. 2018, doi: 10.1016/j.solmat.2018.09.011.
  • [27] M. A. Moghimi and G. Ahmadi, “Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant,” Applied Energy, vol. 225, no. April, pp. 413–423, 2018, doi: 10.1016/j.apenergy.2018.05.027.
  • [28] Y. Jiang, L. Lu, and H. Lu, “A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment,” Solar Energy, vol. 140, pp. 236–240, 2016, doi: 10.1016/j.solener.2016.11.016.
  • [29] A. Rao, R. Pillai, M. Mani, and P. Ramamurthy, “Influence of dust deposition on photovoltaic panel performance,” Energy Procedia, vol. 54, pp. 690–700, 2014, doi: 10.1016/j.egypro.2014.07.310.
  • [30] A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants,” Renewable and Sustainable Energy Reviews, vol. 90, no. May 2017, pp. 1017–1026, 2018, doi: 10.1016/j.rser.2018.03.102.
  • [31] H. Lu, L. Lu, and Y. Wang, “Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building,” Applied Energy, vol. 180, pp. 27–36, Oct. 2016, doi: 10.1016/j.apenergy.2016.07.030.
  • [32] H. Lu and L.-Z. Zhang, “Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study,” Renewable Energy, vol. 135, pp. 21–31, May 2019, doi: 10.1016/j.renene.2018.11.096.
  • [33] H. Heydarabadi, M. Abdolzadeh, and K. Lari, “Simulation of airflow and particle deposition settled over a tilted Photovoltaic module,” Energy, vol. 139, pp. 1016–1029, 2017, doi: 10.1016/j.energy.2017.08.023.
  • [34] H. Lu and W. Zhao, “CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system,” Renewable Energy, vol. 131, pp. 829–840, 2019, doi: 10.1016/j.renene.2018.07.112.
  • [35] B. Mahmoodi, S. H. Hosseini, and G. Ahmadi, “CFD–DEM simulation of a pseudo-two-dimensional spouted bed comprising coarse particles,” Particuology, vol. 43, pp. 171–180, Apr. 2019, doi: 10.1016/j.partic.2017.12.014.
  • [36] M. A. Moghimi, A. Rungasamy, K. J. Craig, and J. P. Meyer, “Introducing CFD in the optical simulation of linear Fresnel collectors,” AIP Conference Proceedings, vol. 1734, no. 1, p. 020015, May 2016, doi: 10.1063/1.4949039.
  • [37] P. Karava, C. M. Jubayer, and E. Savory, “Numerical modelling of forced convective heat transfer from the inclined windward roof of an isolated low-rise building with application to photovoltaic/thermal systems,” Applied Thermal Engineering, vol. 31, no. 11, pp. 1950–1963, Aug. 2011, doi: 10.1016/j.applthermaleng.2011.02.042.
  • [38] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.
  • [39] L. Zhu, A. Li, and Z. Wang, “Analysis of particle trajectories in a quick-contact cyclone reactor using a discrete phase model,” Separation Science and Technology, vol. 53, no. 6, pp. 928–939, Apr. 2018, doi: 10.1080/01496395.2017.1386683.
  • [40] M. W. Heggøy, “Numerical Investigation of Particle Dispersion in a Gravitational Field and in Zero Gravity.,” Master of Science Thesis, 2017, [Online]. Available: The University of Bergen, Department of Physics and Technology.
  • [41] B. Zhao, Y. Zhang, X. Li, X. Yang, and D. Huang, “Comparison of indoor aerosol particle concentration and deposition in di erent ventilated rooms by numerical method,” vol. 39, pp. 1–8, 2004, doi: 10.1016/j.buildenv.2003.08.002.
  • [42] S. Liu, W. Pan, X. Cheng, H. Zhang, Z. Long, and Q. Chen, “CFD Simulations of Wind Flow in an Urban Area with a Full-scale Geometrical Model,” 4th International Conference On Building Energy, Environment, p. 6, 2018.
  • [43] X. Zhang, “CFD simulation of neutral ABL flows,” Risø DTU National Laboratory for Sustainable Energy. Technical University of Denmark, Roskilde, Denmark. (Risø-R_1688 (EN), p. 42, 2009.
  • [44] A. Abiola-Ogedengbe, H. Hangan, and K. Siddiqui, “Experimental investigation of wind effects on a standalone photovoltaic (PV) module,” Renewable Energy, vol. 78, pp. 657–665, 2015, doi: 10.1016/j.renene.2015.01.037.
  • [45] Y. Tominaga, S. ichi Akabayashi, T. Kitahara, and Y. Arinami, “Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations,” Building and Environment, vol. 84, pp. 204–213, 2015, doi: 10.1016/j.buildenv.2014.11.012.
  • [46] C. G. Justus and A. Mikhail, “Height variation of wind speed and wind distributions statistics,” Geophysical Research Letters, vol. 3, no. 5, pp. 261–264, May 1976, doi: 10.1029/GL003i005p00261.
  • [47] J. Twidell and T. Weir, Renewable energy resources, Third edition. London ; New York: Routledge, Taylor & Francis Group, 2015.
  • [48] S. V. Klinkov, V. F. Kosarev, and M. Rein, “Cold spray deposition: Significance of particle impact phenomena,” Aerospace Science and Technology, vol. 9, no. 7, pp. 582–591, Oct. 2005, doi: 10.1016/j.ast.2005.03.005.
  • [49] X. Li, P. F. Dunn, and R. M. Brach, “experimental and numerical studies of microsphere oblique impact with planar surfaces,” Journal of Aerosol Science, vol. 31, no. 5, pp. 583–594, May 2000, doi: 10.1016/S0021-8502(99)00544-3.
  • [50] X. Li, P. F. Dunn, and R. M. Brach, “Experimental and numerical studies on the normal impact of microspheres with surfaces,” Journal of Aerosol Science, vol. 30, no. 4, pp. 439–449, Apr. 1999, doi: 10.1016/S0021-8502(98)00067-6.
  • [51] H. Lu and W. Zhao, “Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system,” Applied Energy, vol. 220, pp. 514–526, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.095.
Year 2021, , 700 - 714, 01.03.2021
https://doi.org/10.18186/thermal.890150

Abstract

References

  • [1] S. A. M. Said, “Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors,” Applied Energy, vol. 37, no. 1, pp. 73–84, Jan. 1990, doi: 10.1016/0306-2619(90)90019-A.
  • [2] R. Siddiqui and U. Bajpai, Deviation in the performance of Solar Module under Climatic parameter as Ambient Temperature and Wind Velocity in Composite Climate, vol. 2. 2012.
  • [3] T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 698–733, 2013, doi:10.1016/j.rser.2012.12.065.
  • [4] Y. Jiang, L. Lu, A. R. Ferro, and G. Ahmadi, “Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces,” Solar Energy, vol. 159, no. April 2017, pp. 1031–1036, 2018, doi: 10.1016/j.solener.2017.08.083.
  • [5] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3192–3203, 2006, doi: 10.1016/j.enconman.2006.02.014.
  • [6] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920–2925, 2012, doi: 10.1016/j.rser.2012.02.012.
  • [7] C. Chen, H. Chen, C. H. Hsueh, and M. Chang, “Photovoltaic module performance and soiling analysis for field environment,” 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, no. 1, 2015, doi: 10.1109/PVSC.2015.7355983.
  • [8] A. Baras, R. K. Jones, A. Alqahtani, M. Alodan, and K. Abdullah, “Measured soiling loss and its economic impact for PV plants in central Saudi Arabia,” in 2016 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, Dec. 2016, pp. 1–7, doi: 10.1109/SASG.2016.7849657.
  • [1] S. A. M. Said, “Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors,” Applied Energy, vol. 37, no. 1, pp. 73–84, Jan. 1990, doi: 10.1016/0306-2619(90)90019-A.
  • [2] R. Siddiqui and U. Bajpai, Deviation in the performance of Solar Module under Climatic parameter as Ambient Temperature and Wind Velocity in Composite Climate, vol. 2. 2012.
  • [3] T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 698–733, 2013, doi: 10.1016/j.rser.2012.12.065.
  • [4] Y. Jiang, L. Lu, A. R. Ferro, and G. Ahmadi, “Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces,” Solar Energy, vol. 159, no. April 2017, pp. 1031–1036, 2018, doi: 10.1016/j.solener.2017.08.083.
  • [5] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3192–3203, 2006, doi: 10.1016/j.enconman.2006.02.014.
  • [6] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920–2925, 2012, doi: 10.1016/j.rser.2012.02.012.
  • [7] C. Chen, H. Chen, C. H. Hsueh, and M. Chang, “Photovoltaic module performance and soiling analysis for field environment,” 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, no. 1, 2015, doi: 10.1109/PVSC.2015.7355983.
  • [8] A. Baras, R. K. Jones, A. Alqahtani, M. Alodan, and K. Abdullah, “Measured soiling loss and its economic impact for PV plants in central Saudi Arabia,” in 2016 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, Dec. 2016, pp. 1–7, doi: 10.1109/SASG.2016.7849657.
  • [9] R. Appels et al., “Effect of soiling on photovoltaic modules,” Solar Energy, vol. 96, pp. 283–291, 2013, doi: 10.1016/j.solener.2013.07.017.
  • [10] K. Chiteka, R. Arora, S. N. Sridhara, and C. C. Enweremadu, “Optimizing wind barrier and photovoltaic array configuration in soiling mitigation,” Renewable Energy, vol. 163, pp. 225–236, Jan. 2021, doi: 10.1016/j.renene.2020.08.155.
  • [11] A. M. Pavan, A. Mellit, D. De Pieri, and S. A. Kalogirou, “A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants,” Applied Energy, vol. 108, pp. 392–401, Aug. 2013, doi: 10.1016/j.apenergy.2013.03.023.
  • [12] A. M. El-Nashar, “The effect of dust accumulation on the performance of evacuated tube collectors,” Solar Energy, vol. 53, no. 1, pp. 105–115, Jul. 1994, doi: 10.1016/S0038-092X(94)90610-6.
  • [13] M. J. Adinoyi and S. A. M. Said, “Effect of dust accumulation on the power outputs of solar photovoltaic modules,” Renewable Energy, vol. 60, pp. 633–636, 2013, doi: 10.1016/j.renene.2013.06.014 Technical note.
  • [14] I. I. Mailuha JT, Murase H, “Knowledge engineering-based studies on solar energy utilization in Kenya,” Agriculture Mechanization in Asia, Africa, and Latin America, vol. 25, pp. 13–6, 1994.
  • [15] D. Goossens, Z. Y. Offer, and A. Zangvil, “Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors,” Solar Energy, vol. 50, no. 1, pp. 75–84, 1993, doi: 10.1016/0038-092X(93)90009-D.
  • [16] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3124–3131, 2010, doi: 10.1016/j.rser.2010.07.065.
  • [17] K. Chiteka, R. Arora, and V. Jain, “CFD Prediction of dust deposition and installation parametric optimisation for soiling mitigation in non-tracking solar PV modules,” International Journal of Ambient Energy, pp. 1–14, Mar. 2019, doi: 10.1080/01430750.2019.1594373.
  • [18] J. K. Kaldellis and M. Kapsali, “Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements,” Energy, vol. 36, no. 8, pp. 5154–5161, Aug. 2011, doi: 10.1016/j.energy.2011.06.018.
  • [19] K. Chiteka, S. N. Sridhara, and R. Arora, “Numerical investigation of installation and environmental parameters on soiling of roof-mounted solar photovoltaic array,” Cogent Engineering, vol. 6, no. 1, Jul. 2019, doi: 10.1080/23311916.2019.1649007.
  • [20] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1307–1316, 2016, doi: 10.1016/j.rser.2016.01.044.
  • [21] M. S. El-Shobokshy and F. M. Hussein, “Effect of dust with different physical properties on the performance of photovoltaic cells,” Solar Energy, vol. 51, no. 6, pp. 505–511, Dec. 1993, doi: 10.1016/0038-092X(93)90135-B.
  • [22] H. Jiang, L. Lu, and K. Sun, “Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules,” Atmospheric Environment, vol. 45, no. 25, pp. 4299–4304, 2011, doi: 10.1016/j.atmosenv.2011.04.084.
  • [23] M. Piliougine et al., “Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates,” Applied Energy, vol. 112, pp. 626–634, 2013, doi: 10.1016/j.apenergy.2013.01.048.
  • [24] T. Lorenz, E. Klimm, and K.-A. Weiss, “Soiling and Anti-soiling Coatings on Surfaces of Solar Thermal Systems – Featuring an Economic Feasibility Analysis,” Energy Procedia, vol. 48, pp. 749–756, Jan. 2014, doi: 10.1016/j.egypro.2014.02.087.
  • [25] M. A. M. L. de Jesus, G. Timò, C. Agustín-Sáenz, I. Braceras, M. Cornelli, and A. de M. Ferreira, “Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence,” Solar Energy Materials and Solar Cells, vol. 185, pp. 517–523, Oct. 2018, doi: 10.1016/j.solmat.2018.05.036.
  • [26] G. Polizos et al., “Anti-soiling and highly transparent coatings with multi-scale features,” Solar Energy Materials and Solar Cells, vol. 188, pp. 255–262, Dec. 2018, doi: 10.1016/j.solmat.2018.09.011.
  • [27] M. A. Moghimi and G. Ahmadi, “Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant,” Applied Energy, vol. 225, no. April, pp. 413–423, 2018, doi: 10.1016/j.apenergy.2018.05.027.
  • [28] Y. Jiang, L. Lu, and H. Lu, “A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment,” Solar Energy, vol. 140, pp. 236–240, 2016, doi: 10.1016/j.solener.2016.11.016.
  • [29] A. Rao, R. Pillai, M. Mani, and P. Ramamurthy, “Influence of dust deposition on photovoltaic panel performance,” Energy Procedia, vol. 54, pp. 690–700, 2014, doi: 10.1016/j.egypro.2014.07.310.
  • [30] A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants,” Renewable and Sustainable Energy Reviews, vol. 90, no. May 2017, pp. 1017–1026, 2018, doi: 10.1016/j.rser.2018.03.102.
  • [31] H. Lu, L. Lu, and Y. Wang, “Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building,” Applied Energy, vol. 180, pp. 27–36, Oct. 2016, doi: 10.1016/j.apenergy.2016.07.030.
  • [32] H. Lu and L.-Z. Zhang, “Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study,” Renewable Energy, vol. 135, pp. 21–31, May 2019, doi: 10.1016/j.renene.2018.11.096.
  • [33] H. Heydarabadi, M. Abdolzadeh, and K. Lari, “Simulation of airflow and particle deposition settled over a tilted Photovoltaic module,” Energy, vol. 139, pp. 1016–1029, 2017, doi: 10.1016/j.energy.2017.08.023.
  • [34] H. Lu and W. Zhao, “CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system,” Renewable Energy, vol. 131, pp. 829–840, 2019, doi: 10.1016/j.renene.2018.07.112.
  • [35] B. Mahmoodi, S. H. Hosseini, and G. Ahmadi, “CFD–DEM simulation of a pseudo-two-dimensional spouted bed comprising coarse particles,” Particuology, vol. 43, pp. 171–180, Apr. 2019, doi: 10.1016/j.partic.2017.12.014.
  • [36] M. A. Moghimi, A. Rungasamy, K. J. Craig, and J. P. Meyer, “Introducing CFD in the optical simulation of linear Fresnel collectors,” AIP Conference Proceedings, vol. 1734, no. 1, p. 020015, May 2016, doi: 10.1063/1.4949039.
  • [37] P. Karava, C. M. Jubayer, and E. Savory, “Numerical modelling of forced convective heat transfer from the inclined windward roof of an isolated low-rise building with application to photovoltaic/thermal systems,” Applied Thermal Engineering, vol. 31, no. 11, pp. 1950–1963, Aug. 2011, doi: 10.1016/j.applthermaleng.2011.02.042.
  • [38] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.
  • [39] L. Zhu, A. Li, and Z. Wang, “Analysis of particle trajectories in a quick-contact cyclone reactor using a discrete phase model,” Separation Science and Technology, vol. 53, no. 6, pp. 928–939, Apr. 2018, doi: 10.1080/01496395.2017.1386683.
  • [40] M. W. Heggøy, “Numerical Investigation of Particle Dispersion in a Gravitational Field and in Zero Gravity.,” Master of Science Thesis, 2017, [Online]. Available: The University of Bergen, Department of Physics and Technology.
  • [41] B. Zhao, Y. Zhang, X. Li, X. Yang, and D. Huang, “Comparison of indoor aerosol particle concentration and deposition in di erent ventilated rooms by numerical method,” vol. 39, pp. 1–8, 2004, doi: 10.1016/j.buildenv.2003.08.002.
  • [42] S. Liu, W. Pan, X. Cheng, H. Zhang, Z. Long, and Q. Chen, “CFD Simulations of Wind Flow in an Urban Area with a Full-scale Geometrical Model,” 4th International Conference On Building Energy, Environment, p. 6, 2018.
  • [43] X. Zhang, “CFD simulation of neutral ABL flows,” Risø DTU National Laboratory for Sustainable Energy. Technical University of Denmark, Roskilde, Denmark. (Risø-R_1688 (EN), p. 42, 2009.
  • [44] A. Abiola-Ogedengbe, H. Hangan, and K. Siddiqui, “Experimental investigation of wind effects on a standalone photovoltaic (PV) module,” Renewable Energy, vol. 78, pp. 657–665, 2015, doi: 10.1016/j.renene.2015.01.037.
  • [45] Y. Tominaga, S. ichi Akabayashi, T. Kitahara, and Y. Arinami, “Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations,” Building and Environment, vol. 84, pp. 204–213, 2015, doi: 10.1016/j.buildenv.2014.11.012.
  • [46] C. G. Justus and A. Mikhail, “Height variation of wind speed and wind distributions statistics,” Geophysical Research Letters, vol. 3, no. 5, pp. 261–264, May 1976, doi: 10.1029/GL003i005p00261.
  • [47] J. Twidell and T. Weir, Renewable energy resources, Third edition. London ; New York: Routledge, Taylor & Francis Group, 2015.
  • [48] S. V. Klinkov, V. F. Kosarev, and M. Rein, “Cold spray deposition: Significance of particle impact phenomena,” Aerospace Science and Technology, vol. 9, no. 7, pp. 582–591, Oct. 2005, doi: 10.1016/j.ast.2005.03.005.
  • [49] X. Li, P. F. Dunn, and R. M. Brach, “experimental and numerical studies of microsphere oblique impact with planar surfaces,” Journal of Aerosol Science, vol. 31, no. 5, pp. 583–594, May 2000, doi: 10.1016/S0021-8502(99)00544-3.
  • [50] X. Li, P. F. Dunn, and R. M. Brach, “Experimental and numerical studies on the normal impact of microspheres with surfaces,” Journal of Aerosol Science, vol. 30, no. 4, pp. 439–449, Apr. 1999, doi: 10.1016/S0021-8502(98)00067-6.
  • [51] H. Lu and W. Zhao, “Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system,” Applied Energy, vol. 220, pp. 514–526, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.095.
There are 59 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rajesh Arora This is me 0000-0001-9234-4115

Kudzanayi Chıteka This is me 0000-0003-3697-5961

S. N. Sridhara This is me 0000-0002-4393-6314

Publication Date March 1, 2021
Submission Date February 28, 2019
Published in Issue Year 2021

Cite

APA Arora, R., Chıteka, K., & Sridhara, S. N. (2021). A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH. Journal of Thermal Engineering, 7(3), 700-714. https://doi.org/10.18186/thermal.890150
AMA Arora R, Chıteka K, Sridhara SN. A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH. Journal of Thermal Engineering. March 2021;7(3):700-714. doi:10.18186/thermal.890150
Chicago Arora, Rajesh, Kudzanayi Chıteka, and S. N. Sridhara. “A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH”. Journal of Thermal Engineering 7, no. 3 (March 2021): 700-714. https://doi.org/10.18186/thermal.890150.
EndNote Arora R, Chıteka K, Sridhara SN (March 1, 2021) A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH. Journal of Thermal Engineering 7 3 700–714.
IEEE R. Arora, K. Chıteka, and S. N. Sridhara, “A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 700–714, 2021, doi: 10.18186/thermal.890150.
ISNAD Arora, Rajesh et al. “A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH”. Journal of Thermal Engineering 7/3 (March 2021), 700-714. https://doi.org/10.18186/thermal.890150.
JAMA Arora R, Chıteka K, Sridhara SN. A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH. Journal of Thermal Engineering. 2021;7:700–714.
MLA Arora, Rajesh et al. “A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 700-14, doi:10.18186/thermal.890150.
Vancouver Arora R, Chıteka K, Sridhara SN. A METHOD TO PREDICT FOULING ON MULTI-STOREY BUILDING MOUNTED SOLAR PHOTOVOLTAIC PANELS: A COMPUTATIONAL FLUID DYNAMICS APPROACH. Journal of Thermal Engineering. 2021;7(3):700-14.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering