Research Article
BibTex RIS Cite
Year 2021, , 1366 - 1376, 02.09.2021
https://doi.org/10.18186/thermal.990645

Abstract

References

  • [1] Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–potential of nanofluids. Journal of Molecular Liquids 2019;289:111049. https://doi.org/10.1016/j.molliq.2019.111049
  • [2] Al-Gebory L, Mengüç MP. The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. Journal of Quantitative Spectroscopy and Radiative Transfer 2018;219:46-60. https://doi.org/10.1016/j.jqsrt.2018.07.020
  • [3] Layth A-G. Participating media for volumetric heat generation. Journal of Thermal Engineering 2019;5:93-9. https://doi.org/10.18186/thermal.505495
  • [4] Sobamowo M. Thermal performance analysis of convective-radiative fin with temperature-dependent thermal conductivity in the presence of uniform magnetic field using partial noether method. Journal of Thermal Engineering 2018;4:2287-302. https://doi.org/10.18186/thermal.438485 [5] Haghtalab A, Mohammadi M, Fakhroueian Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid Phase Equilibria 2015;392:33-42. https://doi.org/10.1016/j.fluid.2015.02.012
  • [6] Huang S, Li X, Yu B, Jiang Z, Huang H. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. Journal of Materials Processing Technology 2020;277:116444. https://doi.org/10.1016/j.jmatprotec.2019.116444
  • [7] Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. Journal of Cleaner Production 2019;206:1089-100. https://doi.org/10.1016/j.jclepro.2018.09.205
  • [8] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Structures & Nano-Objects. 2019;20:100386. https://doi.org/10.1016/j.nanoso.2019.100386
  • [9] Sahin AZ, Uddin MA, Yilbas BS, Al-Sharafi A. Performance enhancement of solar energy systems using nanofluids: An updated review. Renewable Energy 2020;145:1126-48. https://doi.org/10.1016/j.renene.2019.06.108 [10] Goel N, Taylor RA, Otanicar T. A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renewable Energy 2020;145:903-13. https://doi.org/10.1016/j.renene.2019.06.097
  • [11] Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S-i, Ahn Y-C, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technology 2008;186:145-53. https://doi.org/10.1016/j.powtec.2007.11.020
  • [12] Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences 2007;46:1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
  • [13] Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences 2008;101:239-53. https://doi.org/10.1093/toxsci/kfm240
  • [14] Wei W, Fedorov AG, Luo Z, Ni M. Radiative properties of dense nanofluids. Applied Optics 2012;51:6159-71. https://doi.org/10.1364/AO.51.006159
  • [15] Ivezic Z, Mengüç MP. An investigation of dependent/independent scattering regimes using a discrete dipole approximation. International Journal of Heat and Mass Transfer 1996;39:811-22. https://doi.org/10.1016/0017-9310(95)00142-5
  • [16] Ivezic Ž, Mengüç MP, Knauer TG. A procedure to determine the onset of soot agglomeration from multi-wavelength experiments. Journal of Quantitative Spectroscopy and Radiative Transfer 1997;57:859-65. https://doi.org/10.1016/S0022-4073(97)00001-0
  • [17] Prasher R, Phelan P, editors. Modeling of radiative and optical behavior of nanofluids based on multiple and dependent scattering theories, Paper No. IMECE2005-80302. Orlando, Florida: ASME International Mechanical Engineering Congress & Exposition, November; 2005. https://doi.org/10.1115/IMECE2005-80302 [18] Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters 2006;6:1529-34. https://doi.org/10.1021/nl060992s
  • [19] Karami M, Akhavan-Behabadi M, Dehkordi MR, Delfani S. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Solar Energy Materials and Solar Cells 2016;144:136-42. https://doi.org/10.1016/j.solmat.2015.08.018
  • [20] Babick F. Suspensions of colloidal particles and aggregates. Sevillia, Spain: Springer; 2016. https://doi.org/10.1007/978-3-319-30663-6
  • [21] Ravisankar R. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. Journal of Thermal Engineering 2018;4:2188-200. https://doi.org/10.18186/journal-of-thermal-engineering.434036
  • [22] Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. 6th ed. Oxfordshire: Taylor and Francis; 2015. https://doi.org/10.1201/b18835
  • [23] Modest MF. Radiative heat transfer. Massachusetts, USA: Academic Press; 2013. https://doi.org/10.1016/B978-0-12-386944-9.50023-6
  • [24] Lazarus G. Nanofluid heat transfer and applications. Journal of Thermal Engineering 2015;1:113-5. https://doi.org/10.18186/jte.93344
  • [25] Ferrouillat S, Bontemps A, Ribeiro J-P, Gruss J-A, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow 2011;32:424-39. https://doi.org/10.1016/j.ijheatfluidflow.2011.01.003
  • [26] Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. Journal of Thermal Analysis and Calorimetry 2018;131:1577-86. https://doi.org/10.1007/s10973-017-6500-4
  • [27] Yan S, Zhang H, Wang F, Ma R, Wu Y, Tian R. Analysis of thermophysical characteristic of SiO2/water nanofluid and heat transfer enhancement with field synergy principle. Journal of Renewable and Sustainable Energy 2018;10:063704. https://doi.org/10.1063/1.5051207
  • [28] Minkowycz W, Sparrow EM, Abraham JP. Nanoparticle heat transfer and fluid flow. Florida: CRC Press; 2016. https://doi.org/10.1201/b12983
  • [29] Al-Gebory L, Mengüç MP, Koşar A, Şendur K. Effect of electrostatic stabilization on thermal radiation transfer in nanosuspensions: Photo-thermal energy conversion applications. Renewable Energy 2018;119:625-40. https://doi.org/10.1016/j.renene.2017.12.043
  • [30] Mewis J, Wagner NJ. Colloidal suspension rheology. Cambridge: Cambridge University Press; 2012. https://doi.org/10.1017/CBO9780511977978
  • [31] Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook. 3rd ed. Amsterdam, Netherlands: Elsevier; 2018.
  • [32] Mishchenko MI, Dlugach JM, Lock JA, Yurkin MA. Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer 2018;217:274-7. https://doi.org/10.1016/j.jqsrt.2018.05.034
  • [33] Lee BJ, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering 2012;134:021009. https://doi.org/10.1115/1.4005756
  • [34] Brewster M, Tien C. Radiative transfer in packed fluidized beds: dependent versus independent scattering. Journal of Heat Transfer 1982;104:573-9. https://doi.org/10.1115/1.3245170
  • [35] Drolen B, Tien C. Independent and dependent scattering in packed-sphere systems. Journal of Thermophysics and Heat Transfer 1987;1:63-8. https://doi.org/10.2514/3.8
  • [36] Gao L, Lemarchand F, Lequime M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. Journal of the European Optical Society-Rapid Publications 2013;8:13010. https://doi.org/10.2971/jeos.2013.13010
  • [37] Yu H, Zhang H, Su C, Wang K, Jin L. The spectral radiative effect of Si/SiO2 substrate on monolayer aluminum porous microstructure. Thermal Science 2018;22(Suppl 2):629-38. https://doi.org/10.2298/TSCI171125047Y
  • [38] Diebold MP. Application of Light Scattering to Coatings: A User’s Guide. Delaware, USA: Springer; 2014. https://doi.org/10.1007/978-3-319-12015-7

Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids

Year 2021, , 1366 - 1376, 02.09.2021
https://doi.org/10.18186/thermal.990645

Abstract

Radiative transfer is one of the methods of energy transport that includes in a wide range of applications and we feel it in our daily lives. Thermal radiation transfer plays an effective role in the utilization of renewable energy. The radiative and optical properties, as well as the nature of the radiative scattering, are the basic principles of the thermal radiation transfer. The unique properties of nanofluids offer the unmatched potential for use in energy utilization, the working temperature has a dominant effect on the stability and radiative properties of such type of suspensions. In this research, the radiative transfer (optical properties, the independent and dependent scattering, and radiative properties) in water/SiO2 nanofluids are investigated; taking into consideration the effect of working temperature on the stability of the particles. The effect of the temperature on the stability ratio and particle agglomeration is determined by estimating the radius of gyration of particle agglomerates using the scaling law based on the stability (DLVO) method. The single-scattering approximation (SSA) is used to calculate the radiative properties in the case of independent scattering, while the quasi-crystalline approximation (QCA) is used for this purpose in the case of dependent scattering. The results show that the temperature has a significant effect on the stability of particles and radiative transfer in nanofluids. It was observed by comparing the results from the two approximation methods in the Rayleigh regime. Particle size affects the physical and scattering cross-sectional areas which give a general understanding of the scattering mechanism from small to large particles.

References

  • [1] Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–potential of nanofluids. Journal of Molecular Liquids 2019;289:111049. https://doi.org/10.1016/j.molliq.2019.111049
  • [2] Al-Gebory L, Mengüç MP. The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. Journal of Quantitative Spectroscopy and Radiative Transfer 2018;219:46-60. https://doi.org/10.1016/j.jqsrt.2018.07.020
  • [3] Layth A-G. Participating media for volumetric heat generation. Journal of Thermal Engineering 2019;5:93-9. https://doi.org/10.18186/thermal.505495
  • [4] Sobamowo M. Thermal performance analysis of convective-radiative fin with temperature-dependent thermal conductivity in the presence of uniform magnetic field using partial noether method. Journal of Thermal Engineering 2018;4:2287-302. https://doi.org/10.18186/thermal.438485 [5] Haghtalab A, Mohammadi M, Fakhroueian Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid Phase Equilibria 2015;392:33-42. https://doi.org/10.1016/j.fluid.2015.02.012
  • [6] Huang S, Li X, Yu B, Jiang Z, Huang H. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. Journal of Materials Processing Technology 2020;277:116444. https://doi.org/10.1016/j.jmatprotec.2019.116444
  • [7] Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. Journal of Cleaner Production 2019;206:1089-100. https://doi.org/10.1016/j.jclepro.2018.09.205
  • [8] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Structures & Nano-Objects. 2019;20:100386. https://doi.org/10.1016/j.nanoso.2019.100386
  • [9] Sahin AZ, Uddin MA, Yilbas BS, Al-Sharafi A. Performance enhancement of solar energy systems using nanofluids: An updated review. Renewable Energy 2020;145:1126-48. https://doi.org/10.1016/j.renene.2019.06.108 [10] Goel N, Taylor RA, Otanicar T. A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renewable Energy 2020;145:903-13. https://doi.org/10.1016/j.renene.2019.06.097
  • [11] Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S-i, Ahn Y-C, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technology 2008;186:145-53. https://doi.org/10.1016/j.powtec.2007.11.020
  • [12] Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences 2007;46:1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
  • [13] Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences 2008;101:239-53. https://doi.org/10.1093/toxsci/kfm240
  • [14] Wei W, Fedorov AG, Luo Z, Ni M. Radiative properties of dense nanofluids. Applied Optics 2012;51:6159-71. https://doi.org/10.1364/AO.51.006159
  • [15] Ivezic Z, Mengüç MP. An investigation of dependent/independent scattering regimes using a discrete dipole approximation. International Journal of Heat and Mass Transfer 1996;39:811-22. https://doi.org/10.1016/0017-9310(95)00142-5
  • [16] Ivezic Ž, Mengüç MP, Knauer TG. A procedure to determine the onset of soot agglomeration from multi-wavelength experiments. Journal of Quantitative Spectroscopy and Radiative Transfer 1997;57:859-65. https://doi.org/10.1016/S0022-4073(97)00001-0
  • [17] Prasher R, Phelan P, editors. Modeling of radiative and optical behavior of nanofluids based on multiple and dependent scattering theories, Paper No. IMECE2005-80302. Orlando, Florida: ASME International Mechanical Engineering Congress & Exposition, November; 2005. https://doi.org/10.1115/IMECE2005-80302 [18] Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters 2006;6:1529-34. https://doi.org/10.1021/nl060992s
  • [19] Karami M, Akhavan-Behabadi M, Dehkordi MR, Delfani S. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Solar Energy Materials and Solar Cells 2016;144:136-42. https://doi.org/10.1016/j.solmat.2015.08.018
  • [20] Babick F. Suspensions of colloidal particles and aggregates. Sevillia, Spain: Springer; 2016. https://doi.org/10.1007/978-3-319-30663-6
  • [21] Ravisankar R. Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid. Journal of Thermal Engineering 2018;4:2188-200. https://doi.org/10.18186/journal-of-thermal-engineering.434036
  • [22] Howell JR, Menguc MP, Siegel R. Thermal radiation heat transfer. 6th ed. Oxfordshire: Taylor and Francis; 2015. https://doi.org/10.1201/b18835
  • [23] Modest MF. Radiative heat transfer. Massachusetts, USA: Academic Press; 2013. https://doi.org/10.1016/B978-0-12-386944-9.50023-6
  • [24] Lazarus G. Nanofluid heat transfer and applications. Journal of Thermal Engineering 2015;1:113-5. https://doi.org/10.18186/jte.93344
  • [25] Ferrouillat S, Bontemps A, Ribeiro J-P, Gruss J-A, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow 2011;32:424-39. https://doi.org/10.1016/j.ijheatfluidflow.2011.01.003
  • [26] Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. Journal of Thermal Analysis and Calorimetry 2018;131:1577-86. https://doi.org/10.1007/s10973-017-6500-4
  • [27] Yan S, Zhang H, Wang F, Ma R, Wu Y, Tian R. Analysis of thermophysical characteristic of SiO2/water nanofluid and heat transfer enhancement with field synergy principle. Journal of Renewable and Sustainable Energy 2018;10:063704. https://doi.org/10.1063/1.5051207
  • [28] Minkowycz W, Sparrow EM, Abraham JP. Nanoparticle heat transfer and fluid flow. Florida: CRC Press; 2016. https://doi.org/10.1201/b12983
  • [29] Al-Gebory L, Mengüç MP, Koşar A, Şendur K. Effect of electrostatic stabilization on thermal radiation transfer in nanosuspensions: Photo-thermal energy conversion applications. Renewable Energy 2018;119:625-40. https://doi.org/10.1016/j.renene.2017.12.043
  • [30] Mewis J, Wagner NJ. Colloidal suspension rheology. Cambridge: Cambridge University Press; 2012. https://doi.org/10.1017/CBO9780511977978
  • [31] Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook. 3rd ed. Amsterdam, Netherlands: Elsevier; 2018.
  • [32] Mishchenko MI, Dlugach JM, Lock JA, Yurkin MA. Far-field Lorenz–Mie scattering in an absorbing host medium. II: Improved stability of the numerical algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer 2018;217:274-7. https://doi.org/10.1016/j.jqsrt.2018.05.034
  • [33] Lee BJ, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering 2012;134:021009. https://doi.org/10.1115/1.4005756
  • [34] Brewster M, Tien C. Radiative transfer in packed fluidized beds: dependent versus independent scattering. Journal of Heat Transfer 1982;104:573-9. https://doi.org/10.1115/1.3245170
  • [35] Drolen B, Tien C. Independent and dependent scattering in packed-sphere systems. Journal of Thermophysics and Heat Transfer 1987;1:63-8. https://doi.org/10.2514/3.8
  • [36] Gao L, Lemarchand F, Lequime M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. Journal of the European Optical Society-Rapid Publications 2013;8:13010. https://doi.org/10.2971/jeos.2013.13010
  • [37] Yu H, Zhang H, Su C, Wang K, Jin L. The spectral radiative effect of Si/SiO2 substrate on monolayer aluminum porous microstructure. Thermal Science 2018;22(Suppl 2):629-38. https://doi.org/10.2298/TSCI171125047Y
  • [38] Diebold MP. Application of Light Scattering to Coatings: A User’s Guide. Delaware, USA: Springer; 2014. https://doi.org/10.1007/978-3-319-12015-7
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Layth Al-gebory This is me 0000-0001-7814-8214

Publication Date September 2, 2021
Submission Date October 27, 2019
Published in Issue Year 2021

Cite

APA Al-gebory, L. (2021). Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids. Journal of Thermal Engineering, 7(6), 1366-1376. https://doi.org/10.18186/thermal.990645
AMA Al-gebory L. Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids. Journal of Thermal Engineering. September 2021;7(6):1366-1376. doi:10.18186/thermal.990645
Chicago Al-gebory, Layth. “Temperature-Dependent Particle Stability Behavior and Its Effect on Radiative Transfer in water/SiO2 Nanofluids”. Journal of Thermal Engineering 7, no. 6 (September 2021): 1366-76. https://doi.org/10.18186/thermal.990645.
EndNote Al-gebory L (September 1, 2021) Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids. Journal of Thermal Engineering 7 6 1366–1376.
IEEE L. Al-gebory, “Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids”, Journal of Thermal Engineering, vol. 7, no. 6, pp. 1366–1376, 2021, doi: 10.18186/thermal.990645.
ISNAD Al-gebory, Layth. “Temperature-Dependent Particle Stability Behavior and Its Effect on Radiative Transfer in water/SiO2 Nanofluids”. Journal of Thermal Engineering 7/6 (September 2021), 1366-1376. https://doi.org/10.18186/thermal.990645.
JAMA Al-gebory L. Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids. Journal of Thermal Engineering. 2021;7:1366–1376.
MLA Al-gebory, Layth. “Temperature-Dependent Particle Stability Behavior and Its Effect on Radiative Transfer in water/SiO2 Nanofluids”. Journal of Thermal Engineering, vol. 7, no. 6, 2021, pp. 1366-7, doi:10.18186/thermal.990645.
Vancouver Al-gebory L. Temperature-dependent particle stability behavior and its effect on radiative transfer in water/SiO2 nanofluids. Journal of Thermal Engineering. 2021;7(6):1366-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering