Research Article
BibTex RIS Cite
Year 2021, , 1432 - 1447, 02.09.2021
https://doi.org/10.18186/thermal.990803

Abstract

References

  • [1] Zhibin Y. Spray Cooling, Two Phase Flow, Phase Change and Numerical Modeling, Dr. Amimul Ahsan (Ed.). InTech;2011. doi. 10.5772/21076.
  • [2] Kandlikar SG, Clifford N. (2009). Liquid cooled cold plates for industrial high-power electronic devices-thermal design and manufacturing considerations. Heat transfer engineering. 2009;30(12):918-930. doi:10.1080/01457630902837343
  • [3] Karayiannis TG, Mahmoud MM. Flow boiling in micro-channels. Fundamentals and applications. Applied Thermal Engineering. 2017;115:1372-1397. doi: 10.1016/j.applthermaleng.2016.08.063
  • [4] Ganapathya H, Shooshtaria A. Chooa K, Dessiatouna S, Alshehhib M, Ohadi M. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in micro-channels. International Journal of Heat and Mass Transfer. 2013;65:62-72. doi:10.1016/j.ijheatmasstransfer.2013.05.044
  • [5] Kandlikar SG, Satish G. History, advances, and challenges in liquid flow and flow boiling heat transfer in micro-channels. a critical review. Journal of heat transfer. 2012;134(3):034001.doi: 10.1115/1.4005126
  • [6] Pais MR., Chow LC, Mahefkey ET. Surface roughness and its effects on the heat transfer mechanism in spray cooling. Journal of heat transfer. 1992;114(1):211-219. Doi: 10.1115/1.2911248
  • [7] Kandlikar SG, Satish G. Fundamental issues related to flow boiling in minichannels and micro-channels. Experimental thermal and fluid science. 2002;262:389-407. doi: 10.1016/S0894-1777(02)00150-4
  • [8] Kandlikar SG, Satish G. Heat transfer mechanisms during flow boiling in micro-channels. Journal of heat transfer. 2004;126(1):8-16. doi:10.1115/1.1643090
  • [9] Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B. State of the Art of High Heat Flux Cooling Technologies. Heat Transfer Engineering.2007;28(4):258-281. DOI: 10.1080/01457630601117799
  • [10] Bandhauer TM, Bevis TA. High heat flux boiling heat transfer for laser diode arrays. ASME 2016 14th International Conference on Nanochannels, Micro-channels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers Digital Collection. 2016: V001T04A002. doi: 10.1115/ICNMM2016-7947
  • [11] Bevis TA. High heat flux phase change thermal management of laser diode arrays. Diss. Colorado State University. 2016
  • [12] Hannemann R, Marsala J, Pitasi M. Pumped liquid multiphase cooling. ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection. 2008: 469-473. doi: 10.1115/IMECE2004-60669
  • [13] Kivisalu MT, Gorgitrattanagul P, Narain A. Results for high heat-flux flow realizations in innovative operations of milli-meter scale condensers and boilers. International Journal of Heat and Mass Transfer. 2014;75:381-398. doi: 10.1016/j.ijheatmasstransfer.2014.03.056
  • [14] Marcinichen J, Thome JR. New novel green computer two-phase cooling cycle. A model for its steady-state simulation. Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. ECOS2010. 2010, Lausanne, Switzerland.
  • [15] Pan Z, Justin AW, Garimella SV. A cost-effective modeling approach for simulating phase change and flow boiling in micro-channels. ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015, 13th International Conference on Nanochannels, Micro-channels, and Minichannels. American Society of Mechanical Engineers Digital Collection. 2015;IPACK2015-48178: V003T10A023. doi: 10.1115/IPACK2015-48178
  • [16] Skidmore JA. Silicon monolithic microchannel-cooled laser diode array. Applied physics letters. 2000;77(1):10-12. doi: 10.1063/1.126860
  • [17] Yang Z, Peng XF, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. International Journal of Heat and Mass Transfer. 2008;51(5):1003-1016. doi:10.1016/j.ijheatmasstransfer.2007.05.025
  • [18] Höhmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Science. 2002;26(2-4):157-162. doi: 10.1016/S0894-1777(02)00122-X
  • [19] Bogojevic D. Two-phase flow instabilities in a silicon micro-channels heat sink. International Journal of Heat and Fluid Flow. 2009;30(5):854-867. doi: 10.1016/j.ijheatfluidflow.2009.03.013
  • [20] Mukherjee A, Kandlikar SG. The effect of inlet constriction on bubble growth during flow boiling in micro-channels. International Journal of Heat and Mass Transfer. 2009;52:5204-5212. doi:10.1016/j.ijheatmasstransfer.2009.04.025
  • [21] Ali HM, Abubaker M. Effect of vapour velocity on condensate retention on horizontal pin-fin tubes. Energy conversion and management. 2014;86:1001-1009. doi:10.1016/j.enconman.2014.06.064
  • [22] Ali HM, Generous MM, Ahmad F, Irfan M. Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2-Water based Nanofluids. Applied Thermal Engineering. 2017;113:1146-1151. 10.1016/j.applthermaleng.2016.11.127
  • [23] Menni Y, Azzi A, Chamkha AJ, Harmand S. Effect of wall-mounted V-baffle position in a turbulent flow through a channel. International Journal of Numerical Methods for Heat & Fluid Flow. 2018;29(10): 3908-3937 doi:10.1108/HFF-06-2018-0270
  • [25] Menni Y, Azzi A, Chamkha AJ, Harmand S, Analysis of fluid dynamics and heat transfer in a rectangular duct with staggered baffles. Journal of Applied and Computational Mechanics. 2019;5(2):231-248. doi:10.22055/JACM.2018.26023.1305
  • [26] Menni Y, Chamkha AJ, Zidani C, Benyoucef B, Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. Math Model Eng Probl. 2019;6:52-60. doi:10.18280/mmep.060107
  • [27] Kariman H, Hoseinzadeh S, Heyns PS. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Studies in Thermal Engineering. 2019;16: 100548. Doi: 10.1016/j.csite.2019.100548
  • [28] Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. Journal of Thermal Analysis and Calorimetry. 2019: 1-10. Doi: 10.1007/s10973-019-08945-8
  • [29] Hong S, Dang C, Hihara E. Experimental investigation on flow boiling characteristics of radial expanding minichannel heat sinks applied for two-phase flow inlet. International Journal of Heat and Mass Transfer. 2020;151:119316. doi: 10.1016/j.ijheatmasstransfer.2020.119316
  • [30] Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. International Journal of Heat and Mass Transfer. 2020;150:119265. doi:10.1016/j.ijheatmasstransfer.2019.119265
  • [31] Dalkılıç A. A review of flow boiling in mini and microchannel for enhanced geometries. Journal of Thermal Engineering. 2018;4(3):2037-2074. DOI:10.18186/journal-of-thermal-engineering.411437
  • [32] Özdemir M. A review of single-phase and two-phase pressure drop characteristics and flow boiling instabilities in microchannels. 2018;4(6):2463-2451. DOI: 10.18186/thermal.465684
  • [33] Narain A, Prasad HPR, Koca A. Internal Annular Flow Condensation and Flow Boiling: Context, Results, and Recommendations. In: Kulacki F. (eds) Handbook of Thermal Science and Engineering. Springer Cham. 2017. doi.org/10.1007/978-3-319-32003-8_51-1
  • [34] Osher S, Ronald PF. Level set methods. an overview and some recent results. Journal of Computational physics. 2001;169(2):463-502. doi:10.1006/jcph.2000.6636
  • [35] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics. 1981;39(1):201-225.
  • [36] Brackbill JU, Douglas BK, Charles Z. A continuum method for modeling surface tension. Journal of computational physics. 1992;100(2):335-354. doi: 10.1016/0021-9991(92)90240-Y
  • [37] Kuan WK, Kandlikar SG. Experimental study on the effect of stabilization on flow boiling heat transfer in micro-channels. ASME 4th International Conference on Nanochannels, Micro-channels, and Minichannels. American Society of Mechanical Engineers Digital Collection. 2007:746-752. doi: 0.1080/01457630701328304
  • [38] Tuckerman DB, Fabian R, Pease W. High-performance heat sinking for VLSI. IEEE Electron device letters. 1981;2(5):126-129. doi: 10.1109/EDL.1981.25367
  • [39] Sepahyar S. Influence of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values and Flow Parameters–For High Heat-Flux Flow Boiling of Water, Open Access PhD thesis, Michigan Technological University, 2019. doi: 10.37099/mtu.dc.etdr/832

Boiling heat transfer simulation in rectangular mili-channels

Year 2021, , 1432 - 1447, 02.09.2021
https://doi.org/10.18186/thermal.990803

Abstract

Due to the high heat transfer coefficient and compactness of a system, mili-channel-based cooling and heating techniques are greatly expected to be distributing high heat flux from the electronic devices. In terms of cooling performance, the two-phase evaporating flow of boiling flow in mini and mili-channels is more effective than the single-phase flow due to the inclusion of latent energy in the process. In this study, a numerical model was proposed to simulate the boiling heat transfer
of multiphase flow in a channel using different boundary conditions in the channel surfaces. The fluid volume approach regulating the hydrodynamics of the two-phase flow was used. Source terms of the energy and mass transfer that were taken into account at the interface of liquid and vapor were included in the management equations for the conservation of energy and vapor quality. A 3D Ansys-Fluent© simulation model was developed and numerical simulations were conducted for four different boundary conditions. A mili-channel with a length of 140 mm was used. The liquid and gas phases that were used in the model were liquid water and vapor; the total mass flux at the inlet was varied at 118–126 kg/m2s. In order to realize thin film annular flow over the boiler surface, employed specific boundary conditions in the 3D simulation model were obtained by means of one dimensional Matlab© simulation code. By means of utilizing the evaluated numerical results, distribution of heat transfer coefficient, vapor quality and dimensionless temperature over the heat transfer surfaces were reported and compared to experimental results. Numerically evaluated results are in agreement with experimentally measured results. For the studies cases an average value of 23600 W/m2.K was obtained for the heat transfer coefficient.

References

  • [1] Zhibin Y. Spray Cooling, Two Phase Flow, Phase Change and Numerical Modeling, Dr. Amimul Ahsan (Ed.). InTech;2011. doi. 10.5772/21076.
  • [2] Kandlikar SG, Clifford N. (2009). Liquid cooled cold plates for industrial high-power electronic devices-thermal design and manufacturing considerations. Heat transfer engineering. 2009;30(12):918-930. doi:10.1080/01457630902837343
  • [3] Karayiannis TG, Mahmoud MM. Flow boiling in micro-channels. Fundamentals and applications. Applied Thermal Engineering. 2017;115:1372-1397. doi: 10.1016/j.applthermaleng.2016.08.063
  • [4] Ganapathya H, Shooshtaria A. Chooa K, Dessiatouna S, Alshehhib M, Ohadi M. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in micro-channels. International Journal of Heat and Mass Transfer. 2013;65:62-72. doi:10.1016/j.ijheatmasstransfer.2013.05.044
  • [5] Kandlikar SG, Satish G. History, advances, and challenges in liquid flow and flow boiling heat transfer in micro-channels. a critical review. Journal of heat transfer. 2012;134(3):034001.doi: 10.1115/1.4005126
  • [6] Pais MR., Chow LC, Mahefkey ET. Surface roughness and its effects on the heat transfer mechanism in spray cooling. Journal of heat transfer. 1992;114(1):211-219. Doi: 10.1115/1.2911248
  • [7] Kandlikar SG, Satish G. Fundamental issues related to flow boiling in minichannels and micro-channels. Experimental thermal and fluid science. 2002;262:389-407. doi: 10.1016/S0894-1777(02)00150-4
  • [8] Kandlikar SG, Satish G. Heat transfer mechanisms during flow boiling in micro-channels. Journal of heat transfer. 2004;126(1):8-16. doi:10.1115/1.1643090
  • [9] Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B. State of the Art of High Heat Flux Cooling Technologies. Heat Transfer Engineering.2007;28(4):258-281. DOI: 10.1080/01457630601117799
  • [10] Bandhauer TM, Bevis TA. High heat flux boiling heat transfer for laser diode arrays. ASME 2016 14th International Conference on Nanochannels, Micro-channels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers Digital Collection. 2016: V001T04A002. doi: 10.1115/ICNMM2016-7947
  • [11] Bevis TA. High heat flux phase change thermal management of laser diode arrays. Diss. Colorado State University. 2016
  • [12] Hannemann R, Marsala J, Pitasi M. Pumped liquid multiphase cooling. ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection. 2008: 469-473. doi: 10.1115/IMECE2004-60669
  • [13] Kivisalu MT, Gorgitrattanagul P, Narain A. Results for high heat-flux flow realizations in innovative operations of milli-meter scale condensers and boilers. International Journal of Heat and Mass Transfer. 2014;75:381-398. doi: 10.1016/j.ijheatmasstransfer.2014.03.056
  • [14] Marcinichen J, Thome JR. New novel green computer two-phase cooling cycle. A model for its steady-state simulation. Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. ECOS2010. 2010, Lausanne, Switzerland.
  • [15] Pan Z, Justin AW, Garimella SV. A cost-effective modeling approach for simulating phase change and flow boiling in micro-channels. ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015, 13th International Conference on Nanochannels, Micro-channels, and Minichannels. American Society of Mechanical Engineers Digital Collection. 2015;IPACK2015-48178: V003T10A023. doi: 10.1115/IPACK2015-48178
  • [16] Skidmore JA. Silicon monolithic microchannel-cooled laser diode array. Applied physics letters. 2000;77(1):10-12. doi: 10.1063/1.126860
  • [17] Yang Z, Peng XF, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube. International Journal of Heat and Mass Transfer. 2008;51(5):1003-1016. doi:10.1016/j.ijheatmasstransfer.2007.05.025
  • [18] Höhmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Science. 2002;26(2-4):157-162. doi: 10.1016/S0894-1777(02)00122-X
  • [19] Bogojevic D. Two-phase flow instabilities in a silicon micro-channels heat sink. International Journal of Heat and Fluid Flow. 2009;30(5):854-867. doi: 10.1016/j.ijheatfluidflow.2009.03.013
  • [20] Mukherjee A, Kandlikar SG. The effect of inlet constriction on bubble growth during flow boiling in micro-channels. International Journal of Heat and Mass Transfer. 2009;52:5204-5212. doi:10.1016/j.ijheatmasstransfer.2009.04.025
  • [21] Ali HM, Abubaker M. Effect of vapour velocity on condensate retention on horizontal pin-fin tubes. Energy conversion and management. 2014;86:1001-1009. doi:10.1016/j.enconman.2014.06.064
  • [22] Ali HM, Generous MM, Ahmad F, Irfan M. Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2-Water based Nanofluids. Applied Thermal Engineering. 2017;113:1146-1151. 10.1016/j.applthermaleng.2016.11.127
  • [23] Menni Y, Azzi A, Chamkha AJ, Harmand S. Effect of wall-mounted V-baffle position in a turbulent flow through a channel. International Journal of Numerical Methods for Heat & Fluid Flow. 2018;29(10): 3908-3937 doi:10.1108/HFF-06-2018-0270
  • [25] Menni Y, Azzi A, Chamkha AJ, Harmand S, Analysis of fluid dynamics and heat transfer in a rectangular duct with staggered baffles. Journal of Applied and Computational Mechanics. 2019;5(2):231-248. doi:10.22055/JACM.2018.26023.1305
  • [26] Menni Y, Chamkha AJ, Zidani C, Benyoucef B, Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. Math Model Eng Probl. 2019;6:52-60. doi:10.18280/mmep.060107
  • [27] Kariman H, Hoseinzadeh S, Heyns PS. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Studies in Thermal Engineering. 2019;16: 100548. Doi: 10.1016/j.csite.2019.100548
  • [28] Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. Journal of Thermal Analysis and Calorimetry. 2019: 1-10. Doi: 10.1007/s10973-019-08945-8
  • [29] Hong S, Dang C, Hihara E. Experimental investigation on flow boiling characteristics of radial expanding minichannel heat sinks applied for two-phase flow inlet. International Journal of Heat and Mass Transfer. 2020;151:119316. doi: 10.1016/j.ijheatmasstransfer.2020.119316
  • [30] Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. International Journal of Heat and Mass Transfer. 2020;150:119265. doi:10.1016/j.ijheatmasstransfer.2019.119265
  • [31] Dalkılıç A. A review of flow boiling in mini and microchannel for enhanced geometries. Journal of Thermal Engineering. 2018;4(3):2037-2074. DOI:10.18186/journal-of-thermal-engineering.411437
  • [32] Özdemir M. A review of single-phase and two-phase pressure drop characteristics and flow boiling instabilities in microchannels. 2018;4(6):2463-2451. DOI: 10.18186/thermal.465684
  • [33] Narain A, Prasad HPR, Koca A. Internal Annular Flow Condensation and Flow Boiling: Context, Results, and Recommendations. In: Kulacki F. (eds) Handbook of Thermal Science and Engineering. Springer Cham. 2017. doi.org/10.1007/978-3-319-32003-8_51-1
  • [34] Osher S, Ronald PF. Level set methods. an overview and some recent results. Journal of Computational physics. 2001;169(2):463-502. doi:10.1006/jcph.2000.6636
  • [35] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics. 1981;39(1):201-225.
  • [36] Brackbill JU, Douglas BK, Charles Z. A continuum method for modeling surface tension. Journal of computational physics. 1992;100(2):335-354. doi: 10.1016/0021-9991(92)90240-Y
  • [37] Kuan WK, Kandlikar SG. Experimental study on the effect of stabilization on flow boiling heat transfer in micro-channels. ASME 4th International Conference on Nanochannels, Micro-channels, and Minichannels. American Society of Mechanical Engineers Digital Collection. 2007:746-752. doi: 0.1080/01457630701328304
  • [38] Tuckerman DB, Fabian R, Pease W. High-performance heat sinking for VLSI. IEEE Electron device letters. 1981;2(5):126-129. doi: 10.1109/EDL.1981.25367
  • [39] Sepahyar S. Influence of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values and Flow Parameters–For High Heat-Flux Flow Boiling of Water, Open Access PhD thesis, Michigan Technological University, 2019. doi: 10.37099/mtu.dc.etdr/832
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aliihsan Koca This is me 0000-0002-6142-9201

Mansour Nasiri Khalajı This is me 0000-0003-3391-7598

Soroush Sepahyar This is me 0000-0002-2074-7350

Publication Date September 2, 2021
Submission Date January 16, 2020
Published in Issue Year 2021

Cite

APA Koca, A., Khalajı, M. N., & Sepahyar, S. (2021). Boiling heat transfer simulation in rectangular mili-channels. Journal of Thermal Engineering, 7(6), 1432-1447. https://doi.org/10.18186/thermal.990803
AMA Koca A, Khalajı MN, Sepahyar S. Boiling heat transfer simulation in rectangular mili-channels. Journal of Thermal Engineering. September 2021;7(6):1432-1447. doi:10.18186/thermal.990803
Chicago Koca, Aliihsan, Mansour Nasiri Khalajı, and Soroush Sepahyar. “Boiling Heat Transfer Simulation in Rectangular Mili-Channels”. Journal of Thermal Engineering 7, no. 6 (September 2021): 1432-47. https://doi.org/10.18186/thermal.990803.
EndNote Koca A, Khalajı MN, Sepahyar S (September 1, 2021) Boiling heat transfer simulation in rectangular mili-channels. Journal of Thermal Engineering 7 6 1432–1447.
IEEE A. Koca, M. N. Khalajı, and S. Sepahyar, “Boiling heat transfer simulation in rectangular mili-channels”, Journal of Thermal Engineering, vol. 7, no. 6, pp. 1432–1447, 2021, doi: 10.18186/thermal.990803.
ISNAD Koca, Aliihsan et al. “Boiling Heat Transfer Simulation in Rectangular Mili-Channels”. Journal of Thermal Engineering 7/6 (September 2021), 1432-1447. https://doi.org/10.18186/thermal.990803.
JAMA Koca A, Khalajı MN, Sepahyar S. Boiling heat transfer simulation in rectangular mili-channels. Journal of Thermal Engineering. 2021;7:1432–1447.
MLA Koca, Aliihsan et al. “Boiling Heat Transfer Simulation in Rectangular Mili-Channels”. Journal of Thermal Engineering, vol. 7, no. 6, 2021, pp. 1432-47, doi:10.18186/thermal.990803.
Vancouver Koca A, Khalajı MN, Sepahyar S. Boiling heat transfer simulation in rectangular mili-channels. Journal of Thermal Engineering. 2021;7(6):1432-47.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering