Research Article
BibTex RIS Cite

Analysis and simulation of thermal performance of a PTC with secondary reflector

Year 2021, , 1531 - 1540, 02.09.2021
https://doi.org/10.18186/thermal.991097

Abstract

In this paper, a numerical simulation of fluid flow and conjugate heat transfer in a solar thermal parabolic trough collector (PTC) system is presented. The simulation is being carried out on a prototype designed in the Mechanical Laboratory in order to analyze the performance of this system. The main objective is to compare the system performance with and without a secondary reflector (SR). PVSYST software is used to provide numerical temporal values of the solar heat flux in Laghouat city (ALGERIA). Solar flux density values for four days in different seasons have been taken. SolTrace code is used to determine the heat flux distribution on the absorber tube. The conjugate heat transfer and fluid flow equations in the tube absorber are solved by using ANSYS-CFX CFD software. A comparison between two cases (traditional PTC and PTC with parabolic secondary reflector) with the same working fluid (Therminol VP-1) is carried out. The obtained results show that the system performance are practically the same for the four seasons. Moreover, the performance of the system with a second collector is better than that without a second reflector with a ratio of about 1.65.

References

  • [1] Wang YP, Shi XS, Huang QW, Cui Y, Kang X. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system. Energy Conversion and Management 2017;135:55–62. [CrossrRef]
  • [2] Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science 2004;30:231–295. [CrossrRef]
  • [3] Frank L. Overview of parabolic troughs and linear Fresnel receivers. IEA CSP workshop March 2014:1–16.
  • [4] Loni R, Kasaeian AB, Askari Asli-Ardeh E, Ghobadian B, Najafi G. Comparion study of air and thermal oil application in a solar cavity receiver. Journal of Thermal Engineering 2019;5:221–229. [CrossrRef]
  • [5] Xiao J, He Y, Cheng Z, Tao Y, Xu R. Performance analysis of parabolic trough solar collector. Journal of Engineering Thermophysics 2009;30:729–733
  • [6] Liang H, You S, Zhang H. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors. Energy 2016;96:37–47. [CrossrRef]
  • [7] Islam M, Miller S, Yarlagadda P, Karim A. Investigation of the effect of physical and optical trough collector. Energies 2017;10:1907. [CrossrRef]
  • [8] Collares-Pereira M, Gordon JM, Rabl A, Winston R. High concentration two-stage optical for parabolic trough solar collectors with tubular absorber and large rim angle. Solar Energy 1991;47:457–466. [CrossrRef]
  • [9] Bennett W, Lun J, Jonathan F, Roland W. Experimental performance of a two-stage (50X) parabolic trough collector tested to 650°C using a suspended particulate (alumina) HTF. Applied Energy 2018;222:228–243. [CrossrRef]
  • [10] Bennett W, Lun J, Jonathan F. Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600°C. Applied Energy 2019;239:514–525. [CrossrRef]
  • [11] Mahmoud A, Bennett KW, Lun J. Novel double-stage high-concentrated solar hybrid photovoltaic/ thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector. Applied Energy 2016;182:68–79. [CrossrRef]
  • [12] Evangelos B, Christos T. Alternative designs of ­parabolic trough solar collectors. Progress in Energy and Combustion Science 2019;71:81–117. [CrossrRef]
  • [13] Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering 2002;124:109. [CrossrRef]
  • [14] Spirkl W, Ries H, Muschaweck J, Timinger A. Optimized compact secondary reflectors for parabolic troughs with tubular absorbers. Solar Energy 1997;61:153–158. [CrossrRef]
  • [15] Qiu Y, Ze YL, Cheng ZD, Wang K. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy 2015;146:162–173. [CrossrRef]
  • [16] Wang, K, He Y, Cheng Z. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Science China Technological Sciences 2014;57:531–540. [CrossrRef]
  • [17] Cao F, Wang L, Zhu T. Design and optimization of elliptical cavity tube receivers in the parabolic trough solar collector. International Journal of Photoenergy 2017;1471594. [CrossrRef]
  • [18] Sundaram P, Senthil R. Thermal performance enhancement of solar parabolic trough collector using secondary reflector. International Journal of Engineering and Technology 2017;8:2964–2969. [CrossrRef]
  • [19] Bharti A, Mishra A, Bireswar P. Thermal performance analysis of small-sized solar parabolic trough collector using secondary reflectors. International Journal of Sustainable Energy 2019:38:1002–1022 [CrossrRef]
  • [20] Regue HM, Benchatti T, Medjelled H. Improving the performances of a solar cylindrical parabolic dual reflection mirror experimental part. International Journal of Heat and Technology 2014;32:171–178
  • [21] Regue HM, Bouali B, Benchatti T, Benchatti A. Numerical simulation of conjugate heat transfer in a ptc with secondary reflector. International Journal of Heat and Technology 2020;38:9–16
  • [22] Wendelin T. SolTRACE: A new optical modeling tool for concentrating solar optics. Proceedings of ISEC 2003;4490:253–260. [CrossrRef]
  • [23] ANSYS-CFX Theory Guide. (2019). Southpointe: ANSYS Inc. Avaialable at: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf
  • [24] Therminol VP-1. Vapor Phase/ Liquid Phase Heat Transfer Fluid (Liquid Phase), Solutia Inc, 2017. Available at: http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf/, Accessed on Mar 12, 2018.
  • [25] Tu J, Yeoh GH, Liu C. Computational Fluid Dynamics, a Practical Approach. 2nd ed. Amsterdam, Netherlands: Butterworth-Heinemann, Elsevier, 2013.
  • [26] Gurupatham SK, Manikandan GK, Fahad F. Harnessing and storing solar thermal energy using phase change material (pcm) in a small flat plate collector. Journal of Thermal Engineering 2020;6:511–520.
Year 2021, , 1531 - 1540, 02.09.2021
https://doi.org/10.18186/thermal.991097

Abstract

References

  • [1] Wang YP, Shi XS, Huang QW, Cui Y, Kang X. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system. Energy Conversion and Management 2017;135:55–62. [CrossrRef]
  • [2] Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science 2004;30:231–295. [CrossrRef]
  • [3] Frank L. Overview of parabolic troughs and linear Fresnel receivers. IEA CSP workshop March 2014:1–16.
  • [4] Loni R, Kasaeian AB, Askari Asli-Ardeh E, Ghobadian B, Najafi G. Comparion study of air and thermal oil application in a solar cavity receiver. Journal of Thermal Engineering 2019;5:221–229. [CrossrRef]
  • [5] Xiao J, He Y, Cheng Z, Tao Y, Xu R. Performance analysis of parabolic trough solar collector. Journal of Engineering Thermophysics 2009;30:729–733
  • [6] Liang H, You S, Zhang H. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors. Energy 2016;96:37–47. [CrossrRef]
  • [7] Islam M, Miller S, Yarlagadda P, Karim A. Investigation of the effect of physical and optical trough collector. Energies 2017;10:1907. [CrossrRef]
  • [8] Collares-Pereira M, Gordon JM, Rabl A, Winston R. High concentration two-stage optical for parabolic trough solar collectors with tubular absorber and large rim angle. Solar Energy 1991;47:457–466. [CrossrRef]
  • [9] Bennett W, Lun J, Jonathan F, Roland W. Experimental performance of a two-stage (50X) parabolic trough collector tested to 650°C using a suspended particulate (alumina) HTF. Applied Energy 2018;222:228–243. [CrossrRef]
  • [10] Bennett W, Lun J, Jonathan F. Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600°C. Applied Energy 2019;239:514–525. [CrossrRef]
  • [11] Mahmoud A, Bennett KW, Lun J. Novel double-stage high-concentrated solar hybrid photovoltaic/ thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector. Applied Energy 2016;182:68–79. [CrossrRef]
  • [12] Evangelos B, Christos T. Alternative designs of ­parabolic trough solar collectors. Progress in Energy and Combustion Science 2019;71:81–117. [CrossrRef]
  • [13] Price H, Lüpfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering 2002;124:109. [CrossrRef]
  • [14] Spirkl W, Ries H, Muschaweck J, Timinger A. Optimized compact secondary reflectors for parabolic troughs with tubular absorbers. Solar Energy 1997;61:153–158. [CrossrRef]
  • [15] Qiu Y, Ze YL, Cheng ZD, Wang K. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy 2015;146:162–173. [CrossrRef]
  • [16] Wang, K, He Y, Cheng Z. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Science China Technological Sciences 2014;57:531–540. [CrossrRef]
  • [17] Cao F, Wang L, Zhu T. Design and optimization of elliptical cavity tube receivers in the parabolic trough solar collector. International Journal of Photoenergy 2017;1471594. [CrossrRef]
  • [18] Sundaram P, Senthil R. Thermal performance enhancement of solar parabolic trough collector using secondary reflector. International Journal of Engineering and Technology 2017;8:2964–2969. [CrossrRef]
  • [19] Bharti A, Mishra A, Bireswar P. Thermal performance analysis of small-sized solar parabolic trough collector using secondary reflectors. International Journal of Sustainable Energy 2019:38:1002–1022 [CrossrRef]
  • [20] Regue HM, Benchatti T, Medjelled H. Improving the performances of a solar cylindrical parabolic dual reflection mirror experimental part. International Journal of Heat and Technology 2014;32:171–178
  • [21] Regue HM, Bouali B, Benchatti T, Benchatti A. Numerical simulation of conjugate heat transfer in a ptc with secondary reflector. International Journal of Heat and Technology 2020;38:9–16
  • [22] Wendelin T. SolTRACE: A new optical modeling tool for concentrating solar optics. Proceedings of ISEC 2003;4490:253–260. [CrossrRef]
  • [23] ANSYS-CFX Theory Guide. (2019). Southpointe: ANSYS Inc. Avaialable at: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf
  • [24] Therminol VP-1. Vapor Phase/ Liquid Phase Heat Transfer Fluid (Liquid Phase), Solutia Inc, 2017. Available at: http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf/, Accessed on Mar 12, 2018.
  • [25] Tu J, Yeoh GH, Liu C. Computational Fluid Dynamics, a Practical Approach. 2nd ed. Amsterdam, Netherlands: Butterworth-Heinemann, Elsevier, 2013.
  • [26] Gurupatham SK, Manikandan GK, Fahad F. Harnessing and storing solar thermal energy using phase change material (pcm) in a small flat plate collector. Journal of Thermal Engineering 2020;6:511–520.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hanane Maria Regue This is me 0000-0003-2719-5912

Belkacem Boualı This is me 0000-0002-2436-2722

Toufik Benchattı This is me 0000-0002-9955-2205

Ahmed Benchattı This is me

Publication Date September 2, 2021
Submission Date December 30, 2019
Published in Issue Year 2021

Cite

APA Regue, H. M., Boualı, B., Benchattı, T., Benchattı, A. (2021). Analysis and simulation of thermal performance of a PTC with secondary reflector. Journal of Thermal Engineering, 7(6), 1531-1540. https://doi.org/10.18186/thermal.991097
AMA Regue HM, Boualı B, Benchattı T, Benchattı A. Analysis and simulation of thermal performance of a PTC with secondary reflector. Journal of Thermal Engineering. September 2021;7(6):1531-1540. doi:10.18186/thermal.991097
Chicago Regue, Hanane Maria, Belkacem Boualı, Toufik Benchattı, and Ahmed Benchattı. “Analysis and Simulation of Thermal Performance of a PTC With Secondary Reflector”. Journal of Thermal Engineering 7, no. 6 (September 2021): 1531-40. https://doi.org/10.18186/thermal.991097.
EndNote Regue HM, Boualı B, Benchattı T, Benchattı A (September 1, 2021) Analysis and simulation of thermal performance of a PTC with secondary reflector. Journal of Thermal Engineering 7 6 1531–1540.
IEEE H. M. Regue, B. Boualı, T. Benchattı, and A. Benchattı, “Analysis and simulation of thermal performance of a PTC with secondary reflector”, Journal of Thermal Engineering, vol. 7, no. 6, pp. 1531–1540, 2021, doi: 10.18186/thermal.991097.
ISNAD Regue, Hanane Maria et al. “Analysis and Simulation of Thermal Performance of a PTC With Secondary Reflector”. Journal of Thermal Engineering 7/6 (September 2021), 1531-1540. https://doi.org/10.18186/thermal.991097.
JAMA Regue HM, Boualı B, Benchattı T, Benchattı A. Analysis and simulation of thermal performance of a PTC with secondary reflector. Journal of Thermal Engineering. 2021;7:1531–1540.
MLA Regue, Hanane Maria et al. “Analysis and Simulation of Thermal Performance of a PTC With Secondary Reflector”. Journal of Thermal Engineering, vol. 7, no. 6, 2021, pp. 1531-40, doi:10.18186/thermal.991097.
Vancouver Regue HM, Boualı B, Benchattı T, Benchattı A. Analysis and simulation of thermal performance of a PTC with secondary reflector. Journal of Thermal Engineering. 2021;7(6):1531-40.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering