BibTex RIS Cite

Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid

Year 2015, Volume: 1 Issue: 2, 345 - 354, 01.02.2015
https://doi.org/10.18186/jte.15036

Abstract

Efficient power optimization of Brayton heat engine with variable specific heat of the working fluid is analyzed from the view of finite time thermodynamics. The efficient power is defined as the multiplication of engine power and engine efficiency. Hence, the proposed method considers not only the power output but also the engine efficiency. Optimizing the efficient power gives a compromise between power and engine efficiency. Results obtained are compared with those obtained by using the maximum power (MP) and maximum power density (MPD) conditions. The results show that the engine designed at maximum efficient power (MEP) criterion is more efficient as compared with those designed at maximum power and maximum power density conditions. The system analysis is done with variable specific heat parameter due to which its performance is comparable to the real systems. Moreover, engine designed at maximum efficient power criterion requires lesser pressure ratio over those designed at maximum power density conditions. Brayton heat engine with variable specific heat of the working fluid gives realistic prediction of engine efficiency and engine power than does the isentropic Brayton heat engine with constant specific heat

References

  • -
  • Curzon, F.L., Ahlborn, B.: Efficiency of Carnot heat engine at maximum power output. Am. J. Phys. 43(3), 22-24 (1975)
  • Leff, H.S.: Thermal efficiency at maximum power output: New results for old engine. Am. J. Phys. 55(7), 602-610 (1987)
  • Wu, C.: Power optimization of an endoreversible Brayton gas heat engine. Energy Convers. Mgmt. 31 (6), 561-565 (1991)
  • Wu, C., Kiang, R.L.: Power performance of a nonisentropic Brayton cycle. Journal of Engineering for Gas Turbines and Power 113, 501-504 (1991)
  • Sahin, B., Kodal, A. and Yavuz, H.: Efficiency of a Joule-Brayton engine at maximum power density. J. Phys. D: Appl. Phys. 28, 1309-1313 (1995)
  • Sahin, B., Kodal, A. and Yavuz, H.: Maximum power density analysis of an endoreversible Carnot heat engine. Energy 21, 1219-1225 (1996)
  • Sahin, B., Kodal, A., Yilmaz, T. and Yavuz, H.: Maximum power density analysis of irreversible Joule-Brayton engine. J. Phys. D: Appl. Phys. 29, 1162-1167 (1996)
  • Bejan, A.: Entropy gen. minimization: the new thermodynamics of finite-size device and finite time processes. J. Appl. Phys. 79, 1191-1218 (1996) Kaushik, Thermodynamic
  • regenerative closed cycle Brayton heat engine. Int. J. of Solar Energy 22(3-4), 141-151 (2002)
  • Tyagi, S. K., Kaushik, S.C., Tiwari, V.: Ecological optimization and parametric study of an irreversible regenerative modified Brayton cycle with isothermal heat addition. Entropy 5, 377-390 (2003)
  • Durmayaz, A., Sogut, O.S., Sahin, B. and Yavuz, H.: Optimization of thermal systems based on finite time thermodyn. and thermoeconomics. Prog. Energy Combust. Sci. 30, 175-217 (2004) Finite Time an
  • irreversible [10] [11] [12]
  • Cengel, Y., & Turner, R.: Fundamental of Thermal Fluid Sciences. Second Edition, New York: McGraw-Hill (2005)
  • Tyagi, S.K. and Kaushik, S.C.: Ecological optimization of an irreversible regenerative intercooled Brayton heat engine with direct heat loss. International Journal of Ambient Energy 26 (2), 81-92 (2005)
  • Yanlin, Ge, Chen, Lingen, Sun, Fengrui, Wu, C. Thermodynamic simulation of performance of an otto cycle with heat transfer and variable specific heats of working fluid. International Journal of Thermal Science 44, 506-511 (2005)
  • Tyagi, S. K., Chen, G.M., Wang, Q., Kaushik, S.C.: Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle. International Journal of Thermal Sciences 45, 829-840 (2006)
  • Tyagi, Sudhir, K., Wang, Shengwei, Kaushik, S. C.: Irreversible modified complex Brayton cycle under maximum economic condition. Indian Journal of Pure and Applied Physics 44, 592-601 (2006)
  • Emin, A., Models for optimum thermo-ecological criterion of actual thermal cycles. Thermal Science 17(3), 915-930 (2013)
  • Wang, J., Chen, L., Ge, Y. and Sun, F., Ecological performance analysis of an endoreversible modified Brayton cycle. International Journal of Sustainable Energy 33 (3), 619-634 (2014)
  • Yilmaz, T.: Performance optimization of a Joule- Brayton engine based on the efficient power criterion. Proc. IME, Part A: Journal of Power and Energy 2007 221, 603-607 (2007)
  • Al-Sarkhi, A., Akash, B., Abu-Nada E, and Al-Hinti, I.: Efficiency of Atkinson Engine at maximum power density using temperature dependent specific heats. Jordan Journal of Mechanical and Industrial Engineering 2, 71-75 (2008)
  • Ebrahimi, R.: Performance of an endoreversible Atkinson Cycle with variable specific heat ratio of working fluid. Journal of American Science 6(2), 12-17 (2010)
  • Patodi, K., Maheshwari, G.: Performance analysis of an Atkinson cycle with variable specific heats of the working fluid under maximum efficient power conditions. International Journal of Low Carbon Technologies, 1-6 (2012)
  • NOMENCLATURE 1, 2, 3, 4 A1, A Cp
  • specific heat at constant pressure (kJKg-1K- 1) m P Q r T temperature (K) V W power output (kW) Subscripts ep mp pd mpd mep
  • maximum efficient power Greek letters τ θ γ η efficiency

Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid

Year 2015, Volume: 1 Issue: 2, 345 - 354, 01.02.2015
https://doi.org/10.18186/jte.15036

Abstract

References

  • -
  • Curzon, F.L., Ahlborn, B.: Efficiency of Carnot heat engine at maximum power output. Am. J. Phys. 43(3), 22-24 (1975)
  • Leff, H.S.: Thermal efficiency at maximum power output: New results for old engine. Am. J. Phys. 55(7), 602-610 (1987)
  • Wu, C.: Power optimization of an endoreversible Brayton gas heat engine. Energy Convers. Mgmt. 31 (6), 561-565 (1991)
  • Wu, C., Kiang, R.L.: Power performance of a nonisentropic Brayton cycle. Journal of Engineering for Gas Turbines and Power 113, 501-504 (1991)
  • Sahin, B., Kodal, A. and Yavuz, H.: Efficiency of a Joule-Brayton engine at maximum power density. J. Phys. D: Appl. Phys. 28, 1309-1313 (1995)
  • Sahin, B., Kodal, A. and Yavuz, H.: Maximum power density analysis of an endoreversible Carnot heat engine. Energy 21, 1219-1225 (1996)
  • Sahin, B., Kodal, A., Yilmaz, T. and Yavuz, H.: Maximum power density analysis of irreversible Joule-Brayton engine. J. Phys. D: Appl. Phys. 29, 1162-1167 (1996)
  • Bejan, A.: Entropy gen. minimization: the new thermodynamics of finite-size device and finite time processes. J. Appl. Phys. 79, 1191-1218 (1996) Kaushik, Thermodynamic
  • regenerative closed cycle Brayton heat engine. Int. J. of Solar Energy 22(3-4), 141-151 (2002)
  • Tyagi, S. K., Kaushik, S.C., Tiwari, V.: Ecological optimization and parametric study of an irreversible regenerative modified Brayton cycle with isothermal heat addition. Entropy 5, 377-390 (2003)
  • Durmayaz, A., Sogut, O.S., Sahin, B. and Yavuz, H.: Optimization of thermal systems based on finite time thermodyn. and thermoeconomics. Prog. Energy Combust. Sci. 30, 175-217 (2004) Finite Time an
  • irreversible [10] [11] [12]
  • Cengel, Y., & Turner, R.: Fundamental of Thermal Fluid Sciences. Second Edition, New York: McGraw-Hill (2005)
  • Tyagi, S.K. and Kaushik, S.C.: Ecological optimization of an irreversible regenerative intercooled Brayton heat engine with direct heat loss. International Journal of Ambient Energy 26 (2), 81-92 (2005)
  • Yanlin, Ge, Chen, Lingen, Sun, Fengrui, Wu, C. Thermodynamic simulation of performance of an otto cycle with heat transfer and variable specific heats of working fluid. International Journal of Thermal Science 44, 506-511 (2005)
  • Tyagi, S. K., Chen, G.M., Wang, Q., Kaushik, S.C.: Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle. International Journal of Thermal Sciences 45, 829-840 (2006)
  • Tyagi, Sudhir, K., Wang, Shengwei, Kaushik, S. C.: Irreversible modified complex Brayton cycle under maximum economic condition. Indian Journal of Pure and Applied Physics 44, 592-601 (2006)
  • Emin, A., Models for optimum thermo-ecological criterion of actual thermal cycles. Thermal Science 17(3), 915-930 (2013)
  • Wang, J., Chen, L., Ge, Y. and Sun, F., Ecological performance analysis of an endoreversible modified Brayton cycle. International Journal of Sustainable Energy 33 (3), 619-634 (2014)
  • Yilmaz, T.: Performance optimization of a Joule- Brayton engine based on the efficient power criterion. Proc. IME, Part A: Journal of Power and Energy 2007 221, 603-607 (2007)
  • Al-Sarkhi, A., Akash, B., Abu-Nada E, and Al-Hinti, I.: Efficiency of Atkinson Engine at maximum power density using temperature dependent specific heats. Jordan Journal of Mechanical and Industrial Engineering 2, 71-75 (2008)
  • Ebrahimi, R.: Performance of an endoreversible Atkinson Cycle with variable specific heat ratio of working fluid. Journal of American Science 6(2), 12-17 (2010)
  • Patodi, K., Maheshwari, G.: Performance analysis of an Atkinson cycle with variable specific heats of the working fluid under maximum efficient power conditions. International Journal of Low Carbon Technologies, 1-6 (2012)
  • NOMENCLATURE 1, 2, 3, 4 A1, A Cp
  • specific heat at constant pressure (kJKg-1K- 1) m P Q r T temperature (K) V W power output (kW) Subscripts ep mp pd mpd mep
  • maximum efficient power Greek letters τ θ γ η efficiency
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Rajesh Kumar This is me

S C Kaushik This is me

Raj Kumar This is me

Publication Date February 1, 2015
Submission Date May 14, 2015
Published in Issue Year 2015 Volume: 1 Issue: 2

Cite

APA Kumar, R., Kaushik, S. C., & Kumar, R. (2015). Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. Journal of Thermal Engineering, 1(2), 345-354. https://doi.org/10.18186/jte.15036
AMA Kumar R, Kaushik SC, Kumar R. Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. Journal of Thermal Engineering. February 2015;1(2):345-354. doi:10.18186/jte.15036
Chicago Kumar, Rajesh, S C Kaushik, and Raj Kumar. “Performance Optimization of Brayton Heat Engine at Maximum Efficient Power Using Temperature Dependent Specific Heat of Working Fluid”. Journal of Thermal Engineering 1, no. 2 (February 2015): 345-54. https://doi.org/10.18186/jte.15036.
EndNote Kumar R, Kaushik SC, Kumar R (February 1, 2015) Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. Journal of Thermal Engineering 1 2 345–354.
IEEE R. Kumar, S. C. Kaushik, and R. Kumar, “Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid”, Journal of Thermal Engineering, vol. 1, no. 2, pp. 345–354, 2015, doi: 10.18186/jte.15036.
ISNAD Kumar, Rajesh et al. “Performance Optimization of Brayton Heat Engine at Maximum Efficient Power Using Temperature Dependent Specific Heat of Working Fluid”. Journal of Thermal Engineering 1/2 (February 2015), 345-354. https://doi.org/10.18186/jte.15036.
JAMA Kumar R, Kaushik SC, Kumar R. Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. Journal of Thermal Engineering. 2015;1:345–354.
MLA Kumar, Rajesh et al. “Performance Optimization of Brayton Heat Engine at Maximum Efficient Power Using Temperature Dependent Specific Heat of Working Fluid”. Journal of Thermal Engineering, vol. 1, no. 2, 2015, pp. 345-54, doi:10.18186/jte.15036.
Vancouver Kumar R, Kaushik SC, Kumar R. Performance optimization of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. Journal of Thermal Engineering. 2015;1(2):345-54.

Cited By












IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering