Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 5 Sayı: 1, 76 - 92, 03.10.2018
https://doi.org/10.18186/thermal.505489

Öz

Kaynakça

  • [1] Atay, M.T., Coskun, S.B. (2007). Comparative analysis of power law fin type problems using variational iteration method and finite element method. Mathemathical Problem in Engineering, article ID 42072.
  • [2] Chowdbury, M.S.H., Hashim, I., Abdulaziz, O. (2009).Comparison of homotopy analysis and homotopy perturbation method for purely nonlinear fin type problems. Communication in Nonlinear science and Numerical simulations, 14, 371-378.
  • [3] Kraus, A.D., Aziz, A., Welty, J.R. (2002). Extended surface heat transfer, John wiley and sons, New York.
  • [4] Ghasemi, S.E., Hatami, M., Ganji, D.D. (2014). Thermal analysis of convective fins with temperature dependent thermal conductivity and heat generation. Case studies in Thermal Engineering, 4, 1-8.
  • [5] Hatami, M., Mehdizadeh Ahangar, G.H.R, Ganji, D.D., Boubakar, K. (2014). Refrigeration analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84,533-540.
  • [6] Hatami, M., Ganji, D.D., Gorji-Bandpy, M. (2014). Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Studies in Thermal Engineering, 4, 53-64.
  • [7] Hatami, M., Ganji, D.D., Gorji-Bandpy, M. (2014). Experimental and thermodynamical analysis of diesel exhausts vortex generator heat exchanger for optimizing its operating condition. Applied Thermal Engineering, 30, 1-12.
  • [8] Hatami, M., Jafaryar, M, Ganji, D.D., Gorji-Bandpy, M. (2014). Optimization of finned tube heat exchangers for diesel exhaust waste recovery using CFD and CCD techniques. International Communication in Heat and Mass Transfer, 57, 254-263.
  • [9] Fernandez, A. (2009). On some approximate methods for nonlinear models. Applied Mathematical Computation, 215, 168-174.
  • [10] Sadris, S., Raveshi, M.R., Amiri, S. (2012).Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity. Journal of Mechanical Science and Techonology, 26, 1283-1290.
  • [11] Moradi, A., Almadikia, H. (2011).Investigation of effect of thermal conductivity on straight fin performance with DTM. International Journal of Engineering and Applied science, 1, 42-54.
  • [12] Joneidi, A.A., Ganji, D.D., Babaelah, M. (2009). Differential transform method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. International Communication in Heat and Mass Transfer, 39, 757-762.
  • [13] Hatami, M., Ganji, D.D. (2014). Thermal behavior of longitudinal convective-radiative porous fins with different section, shapes and ceramic materials (SiC and Si3N4). Ceramic International, 40, 6765-6775.
  • [14] Hatami, M., Ganji, D.D. (2014). Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of refrigeration, 40, 140-151.
  • [15] Arslanturk, A. (2005). A decomposition method for fin efficiency of convective straight fin with temperature dependent thermal conductivity. International Communication in Heat and Mass Transfer, 32, 831-841.
  • [16] Aziz, A., Enamul-Huq, S.M. (1973).Perturbation solution for convecting fin with temperature dependent thermal conductivity. Journal of Heat Transfer, 97, 300-310.
  • [17] Aziz, A. (1977). Perturbation solution for convective fin with internal heat generation and temperature dependent thermal conductivity. International Journal of Heat and Mass Transfer, 20, 1253-1255.
  • [18] Mosayebidorcheh, S., Ganji, D.D., Masoud, F. (2014). Approximate solutions of nonlinear heat transfer equation of a fin with power law temperature dependent thermal conductivity and heat transfer coefficient. Propulsion and Power Research, 14, 41-47.
  • [19] Ganji, D.D., Dogonchi, A.S. (2014). Analytical investigation of convective heat transfer coefficient and heat generation. International Journal of Physical Science, 9, 466-474.
  • [20] Aziz, A., Bouaziz, M.N. (2011). A least squares method for a longitudinal fins with temperature dependent internal heat generation. Energy Conversion and Management, 52, 2876-2882.
  • [21] Hosseini, K., Daneshian, B., Amanifard, N., Ansari, R. (2012) .Homotopy analysis method for a fin with temperature dependent thermal conductivity and internal heat generation. International Journal of Nonlinear Science, 14, 210-210.
  • [22] Moitheki, R.J., Hayat, T., Malik, M.Y. (2010). Some exact solutions of the fin problem with power law temperature dependent thermal conductivity. Nonlinear Analysis for Real World Application, 11, 3287-3294.
  • [23] Khan, F., Ahmadzadeh, R.M., Hamedi, N.H. (2009). Analytical solutions and efficiency of nonlinear fin problem with temperature dependent thermal conductivity and heat transfer co-efficient. Communication in Nonlinear Science and Numerical Simulation, 14, 3327-3338.
  • [24] Domairry, G., Fazeli, M. (2009). Homotopy analysis method to determine the fin efficiency of convective straight fin with temperature dependent thermal conductivity. Communication in Nonlinear Science and Numerical Simulation, 14, 489-499.
  • [25] Cosun, S.B., Atay, M.T. (2008). Fin efficiency analysis of convective straight fin with temperature dependent thermal conductivity using variational iteration method. Applied Thermal Engineering, 28, 2345-2352.
  • [26] Languri, E.M., Ganji, D.D., Jamshidi, N. (2008). Variational iteration and homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS International Conference on Fluid Mechanics, Acapulco, Mexico.
  • [27] Oguntala, G., Sobamowo G. (2016). Garlerkin method of weighted residuals for convective straight fins with temperature dependent conductivity and internal heat generation. International Journal of Engineering and Technology, 6, 432-442.
  • [28] Filobello-Niño, U., Vazquez-Leal, H., Boubaker, K., Khan, Y., Perez-Sesma, A., Sarmiento Reyes, A., Jimenez-Fernandez, V.M., Diaz-Sanchez, A., Herrera-May, A., Sanchez-Orea J., Pereyra-Castro, K. (2013). Perturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation. Asian Journal of Mathematics and Statistics, DOI: 10.3923 /ajms.2013.
  • [29] Lim, C.W., Wu, B.S. (2002). A modified Mickens procedure for certain non-linear oscillators. Journal of Sound and Vibration, 257, 202-206.
  • [30] Cheung, Y.K., Chen, S.H., Lau S.L. (1991). A modified Lindsteadt-Poincare method for certain strongly non-linear oscillators. International Journal of Non-Linear Mechanics, 26, 367-378.
  • [31] Lewis, R.W., Nithiarasu, P., Seatharamu, K.N. (2004). Fundamentals of the finite element method for heat and fluid flow, Antony Rowe Ltd, Wiltshire, Great Britain.
  • [32]Mercan, H., Atalik, K. (2018). Numerical investigation of blood flow features in intracranial saccular aneurysms. Journal of Thermal Engineering, 4 (7), 1867-1878.
  • [33] Tokgoz,N., Alic, E., Kaska, O., Aksoy, M.M. (2018). The numerical study of heat transfer enhancement using AL2O3-water nanofluid in corrugated duct application. Journal of Thermal Engineering, 4(3), 1984-1997.
  • [34] Belhadj, A., Boucherafa, R., Saim, R. (2018). A numerical study of forced convective flow in microchannel heat sinks with periodic-expansion in construction cross section. Journal of Thermal Engineering, 4(3), 1912-1925.
  • [35] Kilic, M. (2018). Numerical investigation of heat transfer from porous plate with transpiration cooling. Journal of Thermal Engineering, 4(1), 1632-1647.

ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION

Yıl 2019, Cilt: 5 Sayı: 1, 76 - 92, 03.10.2018
https://doi.org/10.18186/thermal.505489

Öz

This paper analyses heat transfer across straight convecting fins with temperature dependent thermal conductivity and internal heat generation using the Adomian decomposition method (ADM). The ADM is the preferred analytical scheme adopted to provide approximate solutions to nonlinear equations arising from the dependence of thermal conductivity and heat transfer coefficient on temperature distribution. The effect of parameters such as internal heat generation, thermo geometric and thermal conductivity on the temperature profile and heat flux is studied. Where results reveal that thermo geometric parameter and thermal conductivity causes a significant increase in heat transfer across fin base. This study provides useful insight to fins operational performance in applications such as radiators, boilers, refrigeration devices, oil pipelines amongst others. Comparison of solutions with existing works in literature forms good agreement.

Kaynakça

  • [1] Atay, M.T., Coskun, S.B. (2007). Comparative analysis of power law fin type problems using variational iteration method and finite element method. Mathemathical Problem in Engineering, article ID 42072.
  • [2] Chowdbury, M.S.H., Hashim, I., Abdulaziz, O. (2009).Comparison of homotopy analysis and homotopy perturbation method for purely nonlinear fin type problems. Communication in Nonlinear science and Numerical simulations, 14, 371-378.
  • [3] Kraus, A.D., Aziz, A., Welty, J.R. (2002). Extended surface heat transfer, John wiley and sons, New York.
  • [4] Ghasemi, S.E., Hatami, M., Ganji, D.D. (2014). Thermal analysis of convective fins with temperature dependent thermal conductivity and heat generation. Case studies in Thermal Engineering, 4, 1-8.
  • [5] Hatami, M., Mehdizadeh Ahangar, G.H.R, Ganji, D.D., Boubakar, K. (2014). Refrigeration analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84,533-540.
  • [6] Hatami, M., Ganji, D.D., Gorji-Bandpy, M. (2014). Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Studies in Thermal Engineering, 4, 53-64.
  • [7] Hatami, M., Ganji, D.D., Gorji-Bandpy, M. (2014). Experimental and thermodynamical analysis of diesel exhausts vortex generator heat exchanger for optimizing its operating condition. Applied Thermal Engineering, 30, 1-12.
  • [8] Hatami, M., Jafaryar, M, Ganji, D.D., Gorji-Bandpy, M. (2014). Optimization of finned tube heat exchangers for diesel exhaust waste recovery using CFD and CCD techniques. International Communication in Heat and Mass Transfer, 57, 254-263.
  • [9] Fernandez, A. (2009). On some approximate methods for nonlinear models. Applied Mathematical Computation, 215, 168-174.
  • [10] Sadris, S., Raveshi, M.R., Amiri, S. (2012).Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity. Journal of Mechanical Science and Techonology, 26, 1283-1290.
  • [11] Moradi, A., Almadikia, H. (2011).Investigation of effect of thermal conductivity on straight fin performance with DTM. International Journal of Engineering and Applied science, 1, 42-54.
  • [12] Joneidi, A.A., Ganji, D.D., Babaelah, M. (2009). Differential transform method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. International Communication in Heat and Mass Transfer, 39, 757-762.
  • [13] Hatami, M., Ganji, D.D. (2014). Thermal behavior of longitudinal convective-radiative porous fins with different section, shapes and ceramic materials (SiC and Si3N4). Ceramic International, 40, 6765-6775.
  • [14] Hatami, M., Ganji, D.D. (2014). Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of refrigeration, 40, 140-151.
  • [15] Arslanturk, A. (2005). A decomposition method for fin efficiency of convective straight fin with temperature dependent thermal conductivity. International Communication in Heat and Mass Transfer, 32, 831-841.
  • [16] Aziz, A., Enamul-Huq, S.M. (1973).Perturbation solution for convecting fin with temperature dependent thermal conductivity. Journal of Heat Transfer, 97, 300-310.
  • [17] Aziz, A. (1977). Perturbation solution for convective fin with internal heat generation and temperature dependent thermal conductivity. International Journal of Heat and Mass Transfer, 20, 1253-1255.
  • [18] Mosayebidorcheh, S., Ganji, D.D., Masoud, F. (2014). Approximate solutions of nonlinear heat transfer equation of a fin with power law temperature dependent thermal conductivity and heat transfer coefficient. Propulsion and Power Research, 14, 41-47.
  • [19] Ganji, D.D., Dogonchi, A.S. (2014). Analytical investigation of convective heat transfer coefficient and heat generation. International Journal of Physical Science, 9, 466-474.
  • [20] Aziz, A., Bouaziz, M.N. (2011). A least squares method for a longitudinal fins with temperature dependent internal heat generation. Energy Conversion and Management, 52, 2876-2882.
  • [21] Hosseini, K., Daneshian, B., Amanifard, N., Ansari, R. (2012) .Homotopy analysis method for a fin with temperature dependent thermal conductivity and internal heat generation. International Journal of Nonlinear Science, 14, 210-210.
  • [22] Moitheki, R.J., Hayat, T., Malik, M.Y. (2010). Some exact solutions of the fin problem with power law temperature dependent thermal conductivity. Nonlinear Analysis for Real World Application, 11, 3287-3294.
  • [23] Khan, F., Ahmadzadeh, R.M., Hamedi, N.H. (2009). Analytical solutions and efficiency of nonlinear fin problem with temperature dependent thermal conductivity and heat transfer co-efficient. Communication in Nonlinear Science and Numerical Simulation, 14, 3327-3338.
  • [24] Domairry, G., Fazeli, M. (2009). Homotopy analysis method to determine the fin efficiency of convective straight fin with temperature dependent thermal conductivity. Communication in Nonlinear Science and Numerical Simulation, 14, 489-499.
  • [25] Cosun, S.B., Atay, M.T. (2008). Fin efficiency analysis of convective straight fin with temperature dependent thermal conductivity using variational iteration method. Applied Thermal Engineering, 28, 2345-2352.
  • [26] Languri, E.M., Ganji, D.D., Jamshidi, N. (2008). Variational iteration and homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS International Conference on Fluid Mechanics, Acapulco, Mexico.
  • [27] Oguntala, G., Sobamowo G. (2016). Garlerkin method of weighted residuals for convective straight fins with temperature dependent conductivity and internal heat generation. International Journal of Engineering and Technology, 6, 432-442.
  • [28] Filobello-Niño, U., Vazquez-Leal, H., Boubaker, K., Khan, Y., Perez-Sesma, A., Sarmiento Reyes, A., Jimenez-Fernandez, V.M., Diaz-Sanchez, A., Herrera-May, A., Sanchez-Orea J., Pereyra-Castro, K. (2013). Perturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation. Asian Journal of Mathematics and Statistics, DOI: 10.3923 /ajms.2013.
  • [29] Lim, C.W., Wu, B.S. (2002). A modified Mickens procedure for certain non-linear oscillators. Journal of Sound and Vibration, 257, 202-206.
  • [30] Cheung, Y.K., Chen, S.H., Lau S.L. (1991). A modified Lindsteadt-Poincare method for certain strongly non-linear oscillators. International Journal of Non-Linear Mechanics, 26, 367-378.
  • [31] Lewis, R.W., Nithiarasu, P., Seatharamu, K.N. (2004). Fundamentals of the finite element method for heat and fluid flow, Antony Rowe Ltd, Wiltshire, Great Britain.
  • [32]Mercan, H., Atalik, K. (2018). Numerical investigation of blood flow features in intracranial saccular aneurysms. Journal of Thermal Engineering, 4 (7), 1867-1878.
  • [33] Tokgoz,N., Alic, E., Kaska, O., Aksoy, M.M. (2018). The numerical study of heat transfer enhancement using AL2O3-water nanofluid in corrugated duct application. Journal of Thermal Engineering, 4(3), 1984-1997.
  • [34] Belhadj, A., Boucherafa, R., Saim, R. (2018). A numerical study of forced convective flow in microchannel heat sinks with periodic-expansion in construction cross section. Journal of Thermal Engineering, 4(3), 1912-1925.
  • [35] Kilic, M. (2018). Numerical investigation of heat transfer from porous plate with transpiration cooling. Journal of Thermal Engineering, 4(1), 1632-1647.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Akinbowale Akinshilo 0000-0002-6436-3420

Yayımlanma Tarihi 3 Ekim 2018
Gönderilme Tarihi 15 Haziran 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 1

Kaynak Göster

APA Akinshilo, A. (2018). ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION. Journal of Thermal Engineering, 5(1), 76-92. https://doi.org/10.18186/thermal.505489
AMA Akinshilo A. ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION. Journal of Thermal Engineering. Ekim 2018;5(1):76-92. doi:10.18186/thermal.505489
Chicago Akinshilo, Akinbowale. “ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION”. Journal of Thermal Engineering 5, sy. 1 (Ekim 2018): 76-92. https://doi.org/10.18186/thermal.505489.
EndNote Akinshilo A (01 Ekim 2018) ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION. Journal of Thermal Engineering 5 1 76–92.
IEEE A. Akinshilo, “ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION”, Journal of Thermal Engineering, c. 5, sy. 1, ss. 76–92, 2018, doi: 10.18186/thermal.505489.
ISNAD Akinshilo, Akinbowale. “ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION”. Journal of Thermal Engineering 5/1 (Ekim 2018), 76-92. https://doi.org/10.18186/thermal.505489.
JAMA Akinshilo A. ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION. Journal of Thermal Engineering. 2018;5:76–92.
MLA Akinshilo, Akinbowale. “ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION”. Journal of Thermal Engineering, c. 5, sy. 1, 2018, ss. 76-92, doi:10.18186/thermal.505489.
Vancouver Akinshilo A. ANALYTICAL DECOMPOSITION SOLUTIONS FOR HEAT TRANSFER ON STRAIGHT FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND INTERNAL HEAT GENERATION. Journal of Thermal Engineering. 2018;5(1):76-92.

Cited By








IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering