Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS

Yıl 2019, Cilt: 5 Sayı: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey, 70 - 76, 29.01.2019
https://doi.org/10.18186/thermal.532095

Öz

Thermal insulation is very
important issue in many industrial applications and different materials are
preferred to satisfy the thermal insulation depending on the applications. One
of the most important properties of the thermal insulation materials is low
thermal conductivity. In addition, the cost of the material is another
important factor. Among the thermal insulation materials, rigid polyurethane
foams are used in automotive, transportation and building sectors due to lower
thermal conductivity. Although the thermal conductivity of the rigid
polyurethane foam is lower than those of many other thermal insulation
materials, other thermal insulation materials may be preferred in some
applications due to their lower costs. Therefore, different natural inorganic
minerals have been added as fillers into the foams, mainly to reduce raw
materials costs. In this study, kaolin, which is a cheap natural inorganic
mineral, was incorporated into rigid polyurethane foams in 5, 10 and 15 % in
mass. Effects of kaolin addition on thermal decomposition and thermal
conductivity of rigid polyurethane foams were investigated. The results
revealed that the incorporations of kaolin into the foams slightly increased
the thermal conductivities of the foams. However, it was found that kaolin
addition enhanced the thermal stability of rigid polyurethane foams. 

Kaynakça

  • [1] Zheng, X. R., Wang, G. J., Xu, W. (2014). Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability, 101, 32-39.
  • [2] Basso, M. C., Giovando, S., Pizzi, A., Pasch, H., Pretorius, N., Delmotte, L., Celzard, A. (2014). Flexible- Elastic Copolymerized Polyurethane- Tannin Foams. Journal of Applied Polymer Science, 131(13), 40499.
  • [3] Silva, M. C., Takahashi, J. A., Chaussy, D., Belgacem, M. N., Silva, G. G. (2010). Composites of Rigid Polyurethane Foam and Cellulose Fiber Residue. Journal of Applied Polymer Science, 117(6), 3665-3672.
  • [4] Anand, Y., Anand, S., Gupta, A., Tyagi, S. K., (2015). Building envelope performance with different insulating materials-An exergy approach. Journal of Thermal Engineering, 1 (4), 433-439.
  • [5] Modesti, M., Lorenzetti, A., Besco, S. (2007). Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams. Polymer Engineering and Science, 47(9), 1351-1358.
  • [6] Qu, M. H., Wang, Y. Z., Liu, Y., Ge, X. G., Wang, D. Y., Wang, C. (2006). Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites. Journal of Applied Polymer Science, 102(1), 564-570.
  • [7] Ghazinezami, A., Khan, W. S., Jabbarnia, A., Asmatulu, R., (2017). Impacts of nanoscale inclusions on fire retardancy, thermal stability, and mechanical properties of polymeric PVC nanocomposites. Journal of Thermal Engineering, 3(4), 1308-1318.
  • [8] Czuprynski, B., Paciorek-Sadowska, J., Liszkowska, J. (2010). Properties of Rigid Polyurethane-Polyisocyanurate Foams Modified with the Selected Fillers. Journal of Applied Polymer Science, 115(4), 2460-2469.
  • [9] Fan, H. Y., Tekeei, A., Suppes, G. J., Hsieh, F. H. (2012). Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay. International Journal of Polymer Science, 474803 (1-8).
  • [10] Kumar, S., Maiti, P. (2015). Understanding the controlled biodegradation of polymers using nanoclays. Polymer, 76, 25-33.
  • [11] Usta N. (2012) Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. Journal of Applied Polymer Science, 124(4), 3372-3382.
  • [12] Sari, M. G., Ramezanzadeh, B., Shahbazi, M., Pakdel, A. S. (2015). Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite. Corrosion Science, 92, 162-172.
  • [13] Pielichowski, K., Kulesza, K., Pearce, E. M. (2002). Flammability of rigid polyurethane foams blown with pentane: Limiting oxygen index data and thermovision characteristics. Journal of Polymer Engineering, 22(3), 195-207.
  • [14] Li, J., Stoliarov, S. I. (2013). Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combustion and Flame, 160(7), 1287-1297.
  • [15] Ali, V., Neelkamal, Haque, F. Z., Zulfequar, M., Husain, M. (2007). Preparation and characterization of polyether-based polyurethane dolomite composite. Journal of Applied Polymer Science, 103(4), 2337-2342.
  • [16] Saha, M. C., Kabir, M. E., Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 479(1-2), 213-222.
  • [17] Aydogan, B., Usta, N. (2015). Experimental investigations of thermal conductivity, thermal degradation and fire resistance of rigid polyurethane foams filled with nano calcite and intumescent flame retardant. Isi Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology, 35(2), 63-74.
  • [18] Khan, W. S., Ceylan, M., Jabarrania, A., Saeednia L., Asmatulu, R. (2017). Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorparated with various nanoscale inclusions. Journal of Thermal Engineering, 3(4), 1375-1390.
  • [19] ASTM C1113. (2013). Standard Test Method for Thermal Conductivity of Refractories by Hot Wire, ASTM International, West Conshohocken, PA, U.S.A., 2013. [20] ASTM D 3576-04. (2004). Standard Test Method for Cell Size of Rigid Cellular Plastics, American Society for Testing and Materials, New York.
  • [21] Huang, N. N., Wang, J. Q. (2009). A TGA-FTIR study on the effect of CaCO3 on the thermal degradation of EBA copolymer. Journal of Analytical and Applied Pyrolysis, 84(2), 124-130.
  • [22] Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S., Naik, Y. P. (2009). Effect of a Nanoclay on the Mechanical, Thermal and Flame Retardant Properties of Rigid Polyurethane Foam. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 46(7), 704-712.
  • [23] Zhao, G., Wang, T. M., Wang, Q. H. (2012). Studies on wettability, mechanical and tribological properties of the polyurethane composites filled with talc. Applied Surface Science, 258(8), 3557-3564.
  • [24] Kim, S. H., Lee, M. C., Kim, H. D., Park, H. C., Jeong, H. M., Yoon, K. S., Kim, B. K. (2010). Nanoclay Reinforced Rigid Polyurethane Foams. Journal of Applied Polymer Science, 117(4), 1992-1997.
  • [25] Marrucho, I. M., Santos, F., Oliveira, N. S., Dohrn, R. (2005). Aging of rigid polyurethane foams: Thermal conductivity of N-2 and cyclopentane gas mixtures. Journal of Cellular Plastics, 41(3), 207-224.
Yıl 2019, Cilt: 5 Sayı: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey, 70 - 76, 29.01.2019
https://doi.org/10.18186/thermal.532095

Öz

Kaynakça

  • [1] Zheng, X. R., Wang, G. J., Xu, W. (2014). Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability, 101, 32-39.
  • [2] Basso, M. C., Giovando, S., Pizzi, A., Pasch, H., Pretorius, N., Delmotte, L., Celzard, A. (2014). Flexible- Elastic Copolymerized Polyurethane- Tannin Foams. Journal of Applied Polymer Science, 131(13), 40499.
  • [3] Silva, M. C., Takahashi, J. A., Chaussy, D., Belgacem, M. N., Silva, G. G. (2010). Composites of Rigid Polyurethane Foam and Cellulose Fiber Residue. Journal of Applied Polymer Science, 117(6), 3665-3672.
  • [4] Anand, Y., Anand, S., Gupta, A., Tyagi, S. K., (2015). Building envelope performance with different insulating materials-An exergy approach. Journal of Thermal Engineering, 1 (4), 433-439.
  • [5] Modesti, M., Lorenzetti, A., Besco, S. (2007). Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams. Polymer Engineering and Science, 47(9), 1351-1358.
  • [6] Qu, M. H., Wang, Y. Z., Liu, Y., Ge, X. G., Wang, D. Y., Wang, C. (2006). Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites. Journal of Applied Polymer Science, 102(1), 564-570.
  • [7] Ghazinezami, A., Khan, W. S., Jabbarnia, A., Asmatulu, R., (2017). Impacts of nanoscale inclusions on fire retardancy, thermal stability, and mechanical properties of polymeric PVC nanocomposites. Journal of Thermal Engineering, 3(4), 1308-1318.
  • [8] Czuprynski, B., Paciorek-Sadowska, J., Liszkowska, J. (2010). Properties of Rigid Polyurethane-Polyisocyanurate Foams Modified with the Selected Fillers. Journal of Applied Polymer Science, 115(4), 2460-2469.
  • [9] Fan, H. Y., Tekeei, A., Suppes, G. J., Hsieh, F. H. (2012). Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay. International Journal of Polymer Science, 474803 (1-8).
  • [10] Kumar, S., Maiti, P. (2015). Understanding the controlled biodegradation of polymers using nanoclays. Polymer, 76, 25-33.
  • [11] Usta N. (2012) Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. Journal of Applied Polymer Science, 124(4), 3372-3382.
  • [12] Sari, M. G., Ramezanzadeh, B., Shahbazi, M., Pakdel, A. S. (2015). Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite. Corrosion Science, 92, 162-172.
  • [13] Pielichowski, K., Kulesza, K., Pearce, E. M. (2002). Flammability of rigid polyurethane foams blown with pentane: Limiting oxygen index data and thermovision characteristics. Journal of Polymer Engineering, 22(3), 195-207.
  • [14] Li, J., Stoliarov, S. I. (2013). Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combustion and Flame, 160(7), 1287-1297.
  • [15] Ali, V., Neelkamal, Haque, F. Z., Zulfequar, M., Husain, M. (2007). Preparation and characterization of polyether-based polyurethane dolomite composite. Journal of Applied Polymer Science, 103(4), 2337-2342.
  • [16] Saha, M. C., Kabir, M. E., Jeelani, S. (2008). Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 479(1-2), 213-222.
  • [17] Aydogan, B., Usta, N. (2015). Experimental investigations of thermal conductivity, thermal degradation and fire resistance of rigid polyurethane foams filled with nano calcite and intumescent flame retardant. Isi Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology, 35(2), 63-74.
  • [18] Khan, W. S., Ceylan, M., Jabarrania, A., Saeednia L., Asmatulu, R. (2017). Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorparated with various nanoscale inclusions. Journal of Thermal Engineering, 3(4), 1375-1390.
  • [19] ASTM C1113. (2013). Standard Test Method for Thermal Conductivity of Refractories by Hot Wire, ASTM International, West Conshohocken, PA, U.S.A., 2013. [20] ASTM D 3576-04. (2004). Standard Test Method for Cell Size of Rigid Cellular Plastics, American Society for Testing and Materials, New York.
  • [21] Huang, N. N., Wang, J. Q. (2009). A TGA-FTIR study on the effect of CaCO3 on the thermal degradation of EBA copolymer. Journal of Analytical and Applied Pyrolysis, 84(2), 124-130.
  • [22] Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S., Naik, Y. P. (2009). Effect of a Nanoclay on the Mechanical, Thermal and Flame Retardant Properties of Rigid Polyurethane Foam. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 46(7), 704-712.
  • [23] Zhao, G., Wang, T. M., Wang, Q. H. (2012). Studies on wettability, mechanical and tribological properties of the polyurethane composites filled with talc. Applied Surface Science, 258(8), 3557-3564.
  • [24] Kim, S. H., Lee, M. C., Kim, H. D., Park, H. C., Jeong, H. M., Yoon, K. S., Kim, B. K. (2010). Nanoclay Reinforced Rigid Polyurethane Foams. Journal of Applied Polymer Science, 117(4), 1992-1997.
  • [25] Marrucho, I. M., Santos, F., Oliveira, N. S., Dohrn, R. (2005). Aging of rigid polyurethane foams: Thermal conductivity of N-2 and cyclopentane gas mixtures. Journal of Cellular Plastics, 41(3), 207-224.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Nazim Usta

Yayımlanma Tarihi 29 Ocak 2019
Gönderilme Tarihi 7 Kasım 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 2 - Issue Name: Special Issue 9: International Conference on Mechanical Engineering 2017, Istanbul, Turkey

Kaynak Göster

APA Usta, N. (2019). EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS. Journal of Thermal Engineering, 5(2), 70-76. https://doi.org/10.18186/thermal.532095
AMA Usta N. EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS. Journal of Thermal Engineering. Ocak 2019;5(2):70-76. doi:10.18186/thermal.532095
Chicago Usta, Nazim. “EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS”. Journal of Thermal Engineering 5, sy. 2 (Ocak 2019): 70-76. https://doi.org/10.18186/thermal.532095.
EndNote Usta N (01 Ocak 2019) EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS. Journal of Thermal Engineering 5 2 70–76.
IEEE N. Usta, “EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS”, Journal of Thermal Engineering, c. 5, sy. 2, ss. 70–76, 2019, doi: 10.18186/thermal.532095.
ISNAD Usta, Nazim. “EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS”. Journal of Thermal Engineering 5/2 (Ocak 2019), 70-76. https://doi.org/10.18186/thermal.532095.
JAMA Usta N. EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS. Journal of Thermal Engineering. 2019;5:70–76.
MLA Usta, Nazim. “EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS”. Journal of Thermal Engineering, c. 5, sy. 2, 2019, ss. 70-76, doi:10.18186/thermal.532095.
Vancouver Usta N. EFFECTS OF KAOLIN ADDITIONS ON THERMAL BEHAVIORS OF RIGID POLYURETHANE FOAMS. Journal of Thermal Engineering. 2019;5(2):70-6.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering