Araştırma Makalesi
BibTex RIS Kaynak Göster

THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS

Yıl 2019, Cilt: 5 Sayı: 3, 198 - 209, 14.03.2019
https://doi.org/10.18186/thermal.541078

Öz

A
thermoeconomic analysis of a water to water heat pump are performed under
different condenser and evaporator conditions. Experiments are realized for
different volumetric   inlet temperatures
of 14.4, 17 and 19



















 and different
volumetric flow rates of 50, 100, 150 lt/h for condenser cooling water. Same
inlet temperatures with condenser cooling water are used for evaporator water
inlet, while constant volumetric flow rate of 100 lt/h is used for each case.
Modified Productive Structure Analysis (MOPSA) is used for thermoeconomic
analysis. It is found that increases in inlet temperature and in volumetric
flow rate cause to decrease in both the unit cost of heat delivered (

) and the unit cost of entropy generation (

). As a result, in the case of

=14.4

and

= 50 lt/h,

 and

values are obtained to be 0.0489 $/kWh and 0.0221 $/kWh,
respectively, while

 and

values are obtained to be 0.0385 $/kWh and 0.0175 $/kWh for

=19

and

= 150 lt/h, respectively.

Kaynakça

  • [1] Waheed, M. A., Oni, A. O., Adejuyigbe, S. B., Adewumi, B. A., Fadare, D. A. (2014). Performance enhancement of vapor recompression heat pump. Applied energy, 114, 69-79.
  • [2] Qureshi, B. A., Zubair, S. M. (2013). Cost optimization of heat exchanger inventory for mechanical subcooling refrigeration cycles. International Journal of Refrigeration, 36(4), 1243-1253.
  • [3] Kodal, A., Sahin, B., Ekmekci, I., Yilmaz, T. (2003). Thermoeconomic optimization for irreversible absorption refrigerators and heat pumps. Energy Conversion and Management, 44(1), 109-123.
  • [4] Kodal, A., Sahin, B., Yilmaz, T. (2000). Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Conversion and Management, 41(6), 607-619.
  • [5] Teyber, R., Trevizoli, P. V., Christiaanse, T. V., Govindappa, P., Niknia, I., Rowe, A. (2017). Permanent magnet design for magnetic heat pumps using total cost minimization. Journal of Magnetism and Magnetic Materials, 442, 87-96.
  • [6] Esfahani, I. J., Yoo, C. (2014). A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: Thermoeconomic and flexibility analysis. Energy, 75, 327-337.
  • [7] Verda, V., Caccin, M., Kona, A. (2016). Thermoeconomic cost assessment in future district heating networks. Energy, 117, 485-491.
  • [8] Arat, H., Arslan, O. (2017). Exergoeconomic analysis of district heating system boosted by the geothermal heat pump. Energy, 119, 1159-1170.
  • [9] Erbay, Z., Hepbasli, A. (2017). Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method. Energy, 127, 502-515.
  • [10] Sayyadi, H., & Nejatolahi, M. (2011). Thermodynamic and thermoeconomic optimization of a cooling tower-assisted ground source heat pump. Geothermics, 40(3), 221-232.
  • [11] Erbay, Z., Hepbasli, A. (2017). Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures. Journal of cleaner production, 142, 1425-1435.
  • [12] Mastrullo, R., Renno, C. (2010). A thermoeconomic model of a photovoltaic heat pump. Applied Thermal Engineering, 30(14-15), 1959-1966.
  • [13] Akbulut, U., Utlu, Z., Kincay, O. (2016). Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system. Applied Thermal Engineering, 102, 904-921.
  • [14] Qin N., Hao P. Z. (2017). The operation characteristics of sewage source heat pump system and the analysis of its thermal economic benefits. Applied Thermal Engineering. 124, 1083-1089
  • [15] Erbay Z., Hepbaşlı A. (2017). Advanced exergoeconomic evaluation of a heat pump food dryer. Biosystems Engineering. 124, 29-39
  • [16] Kwak, H. Y., You, Y., Oh, S. D., Jang, H. N. (2014). Thermoeconomic analysis of ground‐source heat pump systems. International Journal of Energy Research, 38(2), 259-269.
  • [17] von Spakovsky M. R., Evans R. B. (1993). Engineering functional analysis-part I. ASME J Energy Resour Technol. 155, 86-92.
  • [18] Rosen, M. A., Dincer, I. (2003). Exergy–cost–energy–mass analysis of thermal systems and processes. Energy Conversion and Management, 44(10), 1633-1651.
  • [19] Tsatsaronis G., Lin L., Pisa J. (1993). Exergy costing in exergoeconomics. ASME J Energy Resour Technol. 155, 9-16.
  • [20] Tsatsaronis, G., Moran, M. J. (1997). Exergy-aided cost minimization. Energy Conversion and Management, 38(15-17), 1535-1542.
  • [21] Tsatsaronis, G., Park, M. H. (2002). On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management, 43(9-12), 1259-1270.
  • [22] Tsatsaronis G., Lin L. (1990). On exergy costing in exergoeconomics. In: Tsatsaronis G, Bajura RA, Kenney WF, Reistad GM, editors. Computer-aided energy systems analysis. New York: ASME, 1-11.
  • [23] Kim, S. M., Oh, S. D., Kwon, Y. H., Kwak, H. Y. (1998). Exergoeconomic analysis of thermal systems. Energy, 23(5), 393-406.
  • [24] Lazzaretto A., Tsatsaronis G. (1997). On the quest for objective equations in exergy costing. In: Ramalingam ML, Lage JG, Mei VC, Chapman JN, editors. Proceedings of the ASME advanced energy systems division. New York: ASME, 413-428.
  • [25] Lazzaretto A., Tsatsaronis G. (1999). On the calculation of efficiencies and costs in thermal systems. In: Aceves SM, Garimella S, Peterson R, editors. Proceedings of the ASME advanced energy systems division. New York: ASME, 421-430.
  • [26] Erlach, B., Serra, L., Valero, A. (1999). Structural theory as standard for thermoeconomics. Energy Conversion and Management, 40(15-16), 1627-1649.
  • [27] Lozano, M. A., Valero, A. (1993). Theory of the exergetic cost. Energy, 18(9), 939-960.
  • [28] Frangopoulos, C. A. (1987). Thermo-economic functional analysis and optimization. Energy, 12(7), 563-571.
  • [29] Uysal, C., Kurt, H., Kwak, H. Y. (2017). Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120.
  • [30] Moran, M. J. (1982). Availability analysis: a guide to efficient energy use. Englewood Cliffs NJ, Prentice Hall,
  • [31] Enerjisa Başkent Electricity Retail Sales Co.
Yıl 2019, Cilt: 5 Sayı: 3, 198 - 209, 14.03.2019
https://doi.org/10.18186/thermal.541078

Öz

Kaynakça

  • [1] Waheed, M. A., Oni, A. O., Adejuyigbe, S. B., Adewumi, B. A., Fadare, D. A. (2014). Performance enhancement of vapor recompression heat pump. Applied energy, 114, 69-79.
  • [2] Qureshi, B. A., Zubair, S. M. (2013). Cost optimization of heat exchanger inventory for mechanical subcooling refrigeration cycles. International Journal of Refrigeration, 36(4), 1243-1253.
  • [3] Kodal, A., Sahin, B., Ekmekci, I., Yilmaz, T. (2003). Thermoeconomic optimization for irreversible absorption refrigerators and heat pumps. Energy Conversion and Management, 44(1), 109-123.
  • [4] Kodal, A., Sahin, B., Yilmaz, T. (2000). Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Conversion and Management, 41(6), 607-619.
  • [5] Teyber, R., Trevizoli, P. V., Christiaanse, T. V., Govindappa, P., Niknia, I., Rowe, A. (2017). Permanent magnet design for magnetic heat pumps using total cost minimization. Journal of Magnetism and Magnetic Materials, 442, 87-96.
  • [6] Esfahani, I. J., Yoo, C. (2014). A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: Thermoeconomic and flexibility analysis. Energy, 75, 327-337.
  • [7] Verda, V., Caccin, M., Kona, A. (2016). Thermoeconomic cost assessment in future district heating networks. Energy, 117, 485-491.
  • [8] Arat, H., Arslan, O. (2017). Exergoeconomic analysis of district heating system boosted by the geothermal heat pump. Energy, 119, 1159-1170.
  • [9] Erbay, Z., Hepbasli, A. (2017). Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method. Energy, 127, 502-515.
  • [10] Sayyadi, H., & Nejatolahi, M. (2011). Thermodynamic and thermoeconomic optimization of a cooling tower-assisted ground source heat pump. Geothermics, 40(3), 221-232.
  • [11] Erbay, Z., Hepbasli, A. (2017). Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures. Journal of cleaner production, 142, 1425-1435.
  • [12] Mastrullo, R., Renno, C. (2010). A thermoeconomic model of a photovoltaic heat pump. Applied Thermal Engineering, 30(14-15), 1959-1966.
  • [13] Akbulut, U., Utlu, Z., Kincay, O. (2016). Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system. Applied Thermal Engineering, 102, 904-921.
  • [14] Qin N., Hao P. Z. (2017). The operation characteristics of sewage source heat pump system and the analysis of its thermal economic benefits. Applied Thermal Engineering. 124, 1083-1089
  • [15] Erbay Z., Hepbaşlı A. (2017). Advanced exergoeconomic evaluation of a heat pump food dryer. Biosystems Engineering. 124, 29-39
  • [16] Kwak, H. Y., You, Y., Oh, S. D., Jang, H. N. (2014). Thermoeconomic analysis of ground‐source heat pump systems. International Journal of Energy Research, 38(2), 259-269.
  • [17] von Spakovsky M. R., Evans R. B. (1993). Engineering functional analysis-part I. ASME J Energy Resour Technol. 155, 86-92.
  • [18] Rosen, M. A., Dincer, I. (2003). Exergy–cost–energy–mass analysis of thermal systems and processes. Energy Conversion and Management, 44(10), 1633-1651.
  • [19] Tsatsaronis G., Lin L., Pisa J. (1993). Exergy costing in exergoeconomics. ASME J Energy Resour Technol. 155, 9-16.
  • [20] Tsatsaronis, G., Moran, M. J. (1997). Exergy-aided cost minimization. Energy Conversion and Management, 38(15-17), 1535-1542.
  • [21] Tsatsaronis, G., Park, M. H. (2002). On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Conversion and Management, 43(9-12), 1259-1270.
  • [22] Tsatsaronis G., Lin L. (1990). On exergy costing in exergoeconomics. In: Tsatsaronis G, Bajura RA, Kenney WF, Reistad GM, editors. Computer-aided energy systems analysis. New York: ASME, 1-11.
  • [23] Kim, S. M., Oh, S. D., Kwon, Y. H., Kwak, H. Y. (1998). Exergoeconomic analysis of thermal systems. Energy, 23(5), 393-406.
  • [24] Lazzaretto A., Tsatsaronis G. (1997). On the quest for objective equations in exergy costing. In: Ramalingam ML, Lage JG, Mei VC, Chapman JN, editors. Proceedings of the ASME advanced energy systems division. New York: ASME, 413-428.
  • [25] Lazzaretto A., Tsatsaronis G. (1999). On the calculation of efficiencies and costs in thermal systems. In: Aceves SM, Garimella S, Peterson R, editors. Proceedings of the ASME advanced energy systems division. New York: ASME, 421-430.
  • [26] Erlach, B., Serra, L., Valero, A. (1999). Structural theory as standard for thermoeconomics. Energy Conversion and Management, 40(15-16), 1627-1649.
  • [27] Lozano, M. A., Valero, A. (1993). Theory of the exergetic cost. Energy, 18(9), 939-960.
  • [28] Frangopoulos, C. A. (1987). Thermo-economic functional analysis and optimization. Energy, 12(7), 563-571.
  • [29] Uysal, C., Kurt, H., Kwak, H. Y. (2017). Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120.
  • [30] Moran, M. J. (1982). Availability analysis: a guide to efficient energy use. Englewood Cliffs NJ, Prentice Hall,
  • [31] Enerjisa Başkent Electricity Retail Sales Co.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Bahri Aksu Bu kişi benim

Yayımlanma Tarihi 14 Mart 2019
Gönderilme Tarihi 19 Aralık 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 3

Kaynak Göster

APA Aksu, B. (2019). THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS. Journal of Thermal Engineering, 5(3), 198-209. https://doi.org/10.18186/thermal.541078
AMA Aksu B. THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS. Journal of Thermal Engineering. Mart 2019;5(3):198-209. doi:10.18186/thermal.541078
Chicago Aksu, Bahri. “THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS”. Journal of Thermal Engineering 5, sy. 3 (Mart 2019): 198-209. https://doi.org/10.18186/thermal.541078.
EndNote Aksu B (01 Mart 2019) THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS. Journal of Thermal Engineering 5 3 198–209.
IEEE B. Aksu, “THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS”, Journal of Thermal Engineering, c. 5, sy. 3, ss. 198–209, 2019, doi: 10.18186/thermal.541078.
ISNAD Aksu, Bahri. “THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS”. Journal of Thermal Engineering 5/3 (Mart 2019), 198-209. https://doi.org/10.18186/thermal.541078.
JAMA Aksu B. THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS. Journal of Thermal Engineering. 2019;5:198–209.
MLA Aksu, Bahri. “THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS”. Journal of Thermal Engineering, c. 5, sy. 3, 2019, ss. 198-09, doi:10.18186/thermal.541078.
Vancouver Aksu B. THERMOECONOMIC ANALYSIS OF A WATER TO WATER HEAT PUMP UNDER DIFFERENT CONDENSER AND EVAPORATOR CONDITIONS. Journal of Thermal Engineering. 2019;5(3):198-209.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering