This paper presents a new formulation of the
rate of entropy generation in thin films whose thickness is of the order of the
mean-free-path or less. In this relation, an expression for the gradient of the
equivalent equilibrium temperature is proposed that is a function of the
gradient of the phonon intensity at any point inside the thin film. It is shown
that the proposed expression reduces to the familiar gradient of the
thermodynamic temperature in the diffusive limit. Furthermore, the new
formulation is used to compute the entropy generation rate for the case of
steady-state, one-dimensional heat transfer in a thin film by first solving the
Equation of Phonon Radiative Transfer to determine the phonon intensity. These
computations are performed both for the silicon and the diamond thin films, for
a range of Knudsen numbers starting from the diffusive limit up until the
ballistic limit. It is found that the entropy generation rate attains a peak
value at Kn = 0.7 and decreases for other Knudsen numbers when non-equilibrium
transport is adopted in the analysis. However, rate of entropy generation increases
almost linearly for the equilibrium heating situation. This is true for both
the silicon and the diamond thin films.
[1] Majumdar, A. S. M. E. (1993). Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 115(1), 7-16.
[2] Planck, M. (1959). The Theory of Heat Radiation. Dover: New York.
[3] Caldas, M., Semiao, V. (2005). Entropy generation through radiative transfer in participating media: analysis and numerical computation. Journal of Quantitative Spectroscopy and Radiative Transfer, 96(3-4), 423-437.
[4] Liu, L. H., Chu, S. X. (2006). On the entropy generation formula of radiation heat transfer processes. Journal of heat transfer, 128(5), 504-506.
[5] Zhang, Z. M., Basu, S. (2007). Entropy flow and generation in radiative transfer between surfaces. International journal of heat and mass transfer, 50(3-4), 702-712.
[6] Bright, T. J., Zhang, Z. M. (2010). Entropy generation in thin films evaluated from phonon radiative transport. Journal of Heat Transfer, 132(10), 101301.
[7] Ali, H., Yilbas, B. S. (2014). Entropy generation in silicon thin film: Influence of film thickness on entropy generation rate. Journal of Non-Equilibrium Thermodynamics, 39(3), 147-158.
[8] Aziz, A., Khan, W. A. (2012). Entropy generation in an asymmetrically cooled slab with temperature‐dependent internal heat generation. Heat Transfer—Asian Research, 41(3), 260-271.
[9] Yilbas, B. S., Mansoor, S. B., Ali, H. (2017). Heat Transport in Micro-and Nanoscale Thin Films. Elsevier.
Year 2019,
Volume: 5 Issue: 5, 405 - 413, 22.09.2019
[1] Majumdar, A. S. M. E. (1993). Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 115(1), 7-16.
[2] Planck, M. (1959). The Theory of Heat Radiation. Dover: New York.
[3] Caldas, M., Semiao, V. (2005). Entropy generation through radiative transfer in participating media: analysis and numerical computation. Journal of Quantitative Spectroscopy and Radiative Transfer, 96(3-4), 423-437.
[4] Liu, L. H., Chu, S. X. (2006). On the entropy generation formula of radiation heat transfer processes. Journal of heat transfer, 128(5), 504-506.
[5] Zhang, Z. M., Basu, S. (2007). Entropy flow and generation in radiative transfer between surfaces. International journal of heat and mass transfer, 50(3-4), 702-712.
[6] Bright, T. J., Zhang, Z. M. (2010). Entropy generation in thin films evaluated from phonon radiative transport. Journal of Heat Transfer, 132(10), 101301.
[7] Ali, H., Yilbas, B. S. (2014). Entropy generation in silicon thin film: Influence of film thickness on entropy generation rate. Journal of Non-Equilibrium Thermodynamics, 39(3), 147-158.
[8] Aziz, A., Khan, W. A. (2012). Entropy generation in an asymmetrically cooled slab with temperature‐dependent internal heat generation. Heat Transfer—Asian Research, 41(3), 260-271.
[9] Yilbas, B. S., Mansoor, S. B., Ali, H. (2017). Heat Transport in Micro-and Nanoscale Thin Films. Elsevier.
Mansoor, S. (2019). ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM. Journal of Thermal Engineering, 5(5), 405-413. https://doi.org/10.18186/thermal.623211
AMA
Mansoor S. ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM. Journal of Thermal Engineering. September 2019;5(5):405-413. doi:10.18186/thermal.623211
Chicago
Mansoor, Saad. “ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM”. Journal of Thermal Engineering 5, no. 5 (September 2019): 405-13. https://doi.org/10.18186/thermal.623211.
EndNote
Mansoor S (September 1, 2019) ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM. Journal of Thermal Engineering 5 5 405–413.
IEEE
S. Mansoor, “ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM”, Journal of Thermal Engineering, vol. 5, no. 5, pp. 405–413, 2019, doi: 10.18186/thermal.623211.
ISNAD
Mansoor, Saad. “ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM”. Journal of Thermal Engineering 5/5 (September 2019), 405-413. https://doi.org/10.18186/thermal.623211.
JAMA
Mansoor S. ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM. Journal of Thermal Engineering. 2019;5:405–413.
MLA
Mansoor, Saad. “ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM”. Journal of Thermal Engineering, vol. 5, no. 5, 2019, pp. 405-13, doi:10.18186/thermal.623211.
Vancouver
Mansoor S. ENTROPY GENERATION RATE IN A MICROSCALE THIN FILM. Journal of Thermal Engineering. 2019;5(5):405-13.