Research Article
BibTex RIS Cite

INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290

Year 2020, Volume: 6 Issue: 3, 297 - 312, 01.04.2020
https://doi.org/10.18186/thermal.711539

Abstract

This paper investigates a modified ejector cycle (MEC) to further enhance the COP improvement of residential air conditioner (A/C), as compared to the standard ejector cycle (SEC). This paper also presents numerical and experimental studies of the MEC. Numerical approach of MEC performances was evaluated by using SEC cycle that had been developed by many researchers. In the experimental study of MEC, three motive nozzle diameters of 0.9, 1.0 and 1.1 mm were utilized. In addition, environmentally friendly refrigerant of R290 (propane) was used as a working fluid. The modeling results of residential A/C with the cooling capacity of 2.5 kW showed higher COP improvements of MEC than SEC for all entrainment ratios of the ejector. There was no COP improvement for SEC at a low entrainment ratio, whereas there are always COP improvements for all entrainment ratios for MEC. In addition, the experimental results showed the highest COP improvement of 16.67% was achieved with the motive nozzle diameter of 1.1 mm.

References

  • [1] Chang YS, Kim MS, Ro ST. Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. International Journal of Refrigeration. 2000;23(3):232-42. doi:10.1016/s0140-7007(99)00042-0.
  • [2] Devotta S, Padalkar AS, Sane NK. Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration. 2005;28(4):594-604. doi:10.1016/j.ijrefrig.2004.09.013.
  • [3] Zhou G, Zhang Y. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. Applied Energy. 2010;87(5):1522-8. doi:10.1016/j.apenergy.2009.10.005.
  • [4] Padilla M, Revellin R, Bonjour J. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management. 2010;51(11):2195-201. doi:10.1016/j.enconman.2010.03.013.
  • [5] Sukri MF, Musa MN, Senawi MY, Nasution H. Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle. Energy Efficiency. 2015;8(6):1201-29. doi:10.1007/s12053-015-9389-4.
  • [6] Bi S-s, Shi L, Zhang L-l. Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering. 2008;28(14-15):1834-43. doi:10.1016/j.applthermaleng.2007.11.018.
  • [7] Xing M, Wang R, Yu J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International Journal of Refrigeration. 2014;40:398-403. doi:10.1016/j.ijrefrig.2013.12.004.
  • [8] Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management. 2011;52(1):733-7. doi:10.1016/j.enconman.2010.07.052.
  • [9] Kornhauser AA. The Use of an Ejector as a Refrigerant Expander. Conference The Use of an Ejector as a Refrigerant Expander, West Lafayette, USA. p. 10-9.
  • [10] Li D, Groll EA. Transcritical CO2 refrigeration cycle with ejector-expansion device. International Journal of Refrigeration. 2005;28(5):766-73. doi:10.1016/j.ijrefrig.2004.10.008.
  • [11] Yari M, Sirousazar M. Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle. International Journal of Energy Research. 2008;32(7):677-87. doi:10.1002/er.1385.
  • [12] Bilir N, Ersoy HK. Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector. International Journal of Energy Research. 2009;33(5):469-80. doi:10.1002/er.1488.
  • [13] Nehdi E, Kairouani L, Bouzaina M. Performance analysis of the vapour compression cycle using ejector as an expander. International Journal of Energy Research. 2007;31(4):364-75. doi:10.1002/er.1260.
  • [14] Sarkar J. Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants. International Journal of Energy Research. 2010;34(1):84-94. doi:10.1002/er.1558.
  • [15] Sumeru K, Sulaimon S, Ani FN, Nasution H. Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings. Journal of Engineering and Technological Sciences. 2013;45(2):179-92. doi:10.5614/j.eng.technol.sci.2013.45.2.6.
  • [16] Zhou M, Wang X, Yu J. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy Conversion and Management. 2013;73:278-84. doi:10.1016/j.enconman.2013.04.028.
  • [17] Hassanain M, Elgendy E, Fatouh M. Ejector expansion refrigeration system: Ejector design and performance evaluation. International Journal of Refrigeration. 2015;58:1-13. doi:10.1016/j.ijrefrig.2015.05.018.
  • [18] Bilir Sag N, Ersoy HK, Hepbasli A, Halkaci HS. Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities. Energy Conversion and Management. 2015;90:184-94. doi:10.1016/j.enconman.2014.11.023.
  • [19] Wang X, Yu J. An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer. Energy. 2015;93:202-9. doi:10.1016/j.energy.2015.09.038.
  • [20] Sumeru K, Sulaimon S, Nasution H, Ani FN. Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy and Buildings. 2014;79:98-105. doi:10.1016/j.enbuild.2014.04.043.
  • [21] Disawas S, Wongwises S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration. 2004;27(6):587-94. doi:10.1016/j.ijrefrig.2004.04.002.
  • [22] Arsana ME, Kusuma IGNW, Sucipta M, Suamir IN. Comparative Analysis of Performance between Two Phase Ejector with Accomulator and COS Split Air-Conditioning Dual Evaporator. 2018. doi:10.2991/icst-18.2018.197.
  • [23] Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-47. doi:10.1016/j.ijthermalsci.2011.06.007.
  • [24] Chaiwongsa P, Wongwises S. Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration. 2007;30(4):601-8. doi:10.1016/j.ijrefrig.2006.11.006.
  • [25] Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration. 1997;20(5):308-18. doi:10.1016/s0140-7007(97)00025-x.
  • [26] Taslimitaleghani S, Sorin M, Poncet S. Energy and exergy efficiencies of different configurations of the ejector-based co2 refrigeration systems. International Journal of Energy Production and Management. 2018;3(1):22-33. doi:10.2495/eq-v3-n1-22-33.
  • [27] Deng J-q, Jiang P-x, Lu T, Lu W. Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Applied Thermal Engineering. 2007;27(2-3):381-8. doi:10.1016/j.applthermaleng.2006.07.016.
  • [28] Harrell GS, Kornhauser AA. Performance tests of a two phase ejector. Conference Performance tests of a two phase ejector, Orlando, FL vol. Volume 3. p. pp. 49-53.
  • [29] Menegay P, Kornhauser AA. Improvements to the ejector expansion refrigeration cycle. 1996;2:702-6. doi:10.1109/iecec.1996.553783.
  • [30] Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. International Journal of Refrigeration. 2008;31(3):411-22. doi:10.1016/j.ijrefrig.2007.07.013.
  • [31] Elbel S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration. 2011;34(7):1545-61. doi:10.1016/j.ijrefrig.2010.11.011.
  • [32] Lucas C, Koehler J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. International Journal of Refrigeration. 2012;35(6):1595-603. doi:10.1016/j.ijrefrig.2012.05.010.
  • [33] Haida M, Banasiak K, Smolka J, Hafner A, Eikevik TM. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module. International Journal of Refrigeration. 2016;64:93-107. doi:10.1016/j.ijrefrig.2016.01.017.
  • [34] Palacz M, Smolka J, Nowak AJ, Banasiak K, Hafner A. Shape optimisation of a two-phase ejector for CO 2 refrigeration systems. International Journal of Refrigeration. 2017;74:212-23. doi:10.1016/j.ijrefrig.2016.10.013.
Year 2020, Volume: 6 Issue: 3, 297 - 312, 01.04.2020
https://doi.org/10.18186/thermal.711539

Abstract

References

  • [1] Chang YS, Kim MS, Ro ST. Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. International Journal of Refrigeration. 2000;23(3):232-42. doi:10.1016/s0140-7007(99)00042-0.
  • [2] Devotta S, Padalkar AS, Sane NK. Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration. 2005;28(4):594-604. doi:10.1016/j.ijrefrig.2004.09.013.
  • [3] Zhou G, Zhang Y. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. Applied Energy. 2010;87(5):1522-8. doi:10.1016/j.apenergy.2009.10.005.
  • [4] Padilla M, Revellin R, Bonjour J. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management. 2010;51(11):2195-201. doi:10.1016/j.enconman.2010.03.013.
  • [5] Sukri MF, Musa MN, Senawi MY, Nasution H. Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle. Energy Efficiency. 2015;8(6):1201-29. doi:10.1007/s12053-015-9389-4.
  • [6] Bi S-s, Shi L, Zhang L-l. Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering. 2008;28(14-15):1834-43. doi:10.1016/j.applthermaleng.2007.11.018.
  • [7] Xing M, Wang R, Yu J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International Journal of Refrigeration. 2014;40:398-403. doi:10.1016/j.ijrefrig.2013.12.004.
  • [8] Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management. 2011;52(1):733-7. doi:10.1016/j.enconman.2010.07.052.
  • [9] Kornhauser AA. The Use of an Ejector as a Refrigerant Expander. Conference The Use of an Ejector as a Refrigerant Expander, West Lafayette, USA. p. 10-9.
  • [10] Li D, Groll EA. Transcritical CO2 refrigeration cycle with ejector-expansion device. International Journal of Refrigeration. 2005;28(5):766-73. doi:10.1016/j.ijrefrig.2004.10.008.
  • [11] Yari M, Sirousazar M. Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle. International Journal of Energy Research. 2008;32(7):677-87. doi:10.1002/er.1385.
  • [12] Bilir N, Ersoy HK. Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector. International Journal of Energy Research. 2009;33(5):469-80. doi:10.1002/er.1488.
  • [13] Nehdi E, Kairouani L, Bouzaina M. Performance analysis of the vapour compression cycle using ejector as an expander. International Journal of Energy Research. 2007;31(4):364-75. doi:10.1002/er.1260.
  • [14] Sarkar J. Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants. International Journal of Energy Research. 2010;34(1):84-94. doi:10.1002/er.1558.
  • [15] Sumeru K, Sulaimon S, Ani FN, Nasution H. Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings. Journal of Engineering and Technological Sciences. 2013;45(2):179-92. doi:10.5614/j.eng.technol.sci.2013.45.2.6.
  • [16] Zhou M, Wang X, Yu J. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy Conversion and Management. 2013;73:278-84. doi:10.1016/j.enconman.2013.04.028.
  • [17] Hassanain M, Elgendy E, Fatouh M. Ejector expansion refrigeration system: Ejector design and performance evaluation. International Journal of Refrigeration. 2015;58:1-13. doi:10.1016/j.ijrefrig.2015.05.018.
  • [18] Bilir Sag N, Ersoy HK, Hepbasli A, Halkaci HS. Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities. Energy Conversion and Management. 2015;90:184-94. doi:10.1016/j.enconman.2014.11.023.
  • [19] Wang X, Yu J. An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer. Energy. 2015;93:202-9. doi:10.1016/j.energy.2015.09.038.
  • [20] Sumeru K, Sulaimon S, Nasution H, Ani FN. Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy and Buildings. 2014;79:98-105. doi:10.1016/j.enbuild.2014.04.043.
  • [21] Disawas S, Wongwises S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration. 2004;27(6):587-94. doi:10.1016/j.ijrefrig.2004.04.002.
  • [22] Arsana ME, Kusuma IGNW, Sucipta M, Suamir IN. Comparative Analysis of Performance between Two Phase Ejector with Accomulator and COS Split Air-Conditioning Dual Evaporator. 2018. doi:10.2991/icst-18.2018.197.
  • [23] Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-47. doi:10.1016/j.ijthermalsci.2011.06.007.
  • [24] Chaiwongsa P, Wongwises S. Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration. 2007;30(4):601-8. doi:10.1016/j.ijrefrig.2006.11.006.
  • [25] Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration. 1997;20(5):308-18. doi:10.1016/s0140-7007(97)00025-x.
  • [26] Taslimitaleghani S, Sorin M, Poncet S. Energy and exergy efficiencies of different configurations of the ejector-based co2 refrigeration systems. International Journal of Energy Production and Management. 2018;3(1):22-33. doi:10.2495/eq-v3-n1-22-33.
  • [27] Deng J-q, Jiang P-x, Lu T, Lu W. Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Applied Thermal Engineering. 2007;27(2-3):381-8. doi:10.1016/j.applthermaleng.2006.07.016.
  • [28] Harrell GS, Kornhauser AA. Performance tests of a two phase ejector. Conference Performance tests of a two phase ejector, Orlando, FL vol. Volume 3. p. pp. 49-53.
  • [29] Menegay P, Kornhauser AA. Improvements to the ejector expansion refrigeration cycle. 1996;2:702-6. doi:10.1109/iecec.1996.553783.
  • [30] Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. International Journal of Refrigeration. 2008;31(3):411-22. doi:10.1016/j.ijrefrig.2007.07.013.
  • [31] Elbel S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration. 2011;34(7):1545-61. doi:10.1016/j.ijrefrig.2010.11.011.
  • [32] Lucas C, Koehler J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. International Journal of Refrigeration. 2012;35(6):1595-603. doi:10.1016/j.ijrefrig.2012.05.010.
  • [33] Haida M, Banasiak K, Smolka J, Hafner A, Eikevik TM. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module. International Journal of Refrigeration. 2016;64:93-107. doi:10.1016/j.ijrefrig.2016.01.017.
  • [34] Palacz M, Smolka J, Nowak AJ, Banasiak K, Hafner A. Shape optimisation of a two-phase ejector for CO 2 refrigeration systems. International Journal of Refrigeration. 2017;74:212-23. doi:10.1016/j.ijrefrig.2016.10.013.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kasni Sumeru This is me 0000-0003-3052-9610

Mohamad Firdaus Sukri This is me 0000-0002-0385-6897

Pratikto Pratikto This is me 0000-0003-4335-2324

Apip Badarudin This is me 0000-0001-6241-1532

Publication Date April 1, 2020
Submission Date April 23, 2019
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

APA Sumeru, K., Sukri, M. F., Pratikto, P., Badarudin, A. (2020). INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290. Journal of Thermal Engineering, 6(3), 297-312. https://doi.org/10.18186/thermal.711539
AMA Sumeru K, Sukri MF, Pratikto P, Badarudin A. INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290. Journal of Thermal Engineering. April 2020;6(3):297-312. doi:10.18186/thermal.711539
Chicago Sumeru, Kasni, Mohamad Firdaus Sukri, Pratikto Pratikto, and Apip Badarudin. “INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290”. Journal of Thermal Engineering 6, no. 3 (April 2020): 297-312. https://doi.org/10.18186/thermal.711539.
EndNote Sumeru K, Sukri MF, Pratikto P, Badarudin A (April 1, 2020) INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290. Journal of Thermal Engineering 6 3 297–312.
IEEE K. Sumeru, M. F. Sukri, P. Pratikto, and A. Badarudin, “INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290”, Journal of Thermal Engineering, vol. 6, no. 3, pp. 297–312, 2020, doi: 10.18186/thermal.711539.
ISNAD Sumeru, Kasni et al. “INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290”. Journal of Thermal Engineering 6/3 (April 2020), 297-312. https://doi.org/10.18186/thermal.711539.
JAMA Sumeru K, Sukri MF, Pratikto P, Badarudin A. INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290. Journal of Thermal Engineering. 2020;6:297–312.
MLA Sumeru, Kasni et al. “INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290”. Journal of Thermal Engineering, vol. 6, no. 3, 2020, pp. 297-12, doi:10.18186/thermal.711539.
Vancouver Sumeru K, Sukri MF, Pratikto P, Badarudin A. INVESTIGATION OF MODIFIED EJECTOR CYCLE ON RESIDENTIAL AIR CONDITIONER WITH ENVIRONMENTALLY BENIGN REFRIGERANT OF R290. Journal of Thermal Engineering. 2020;6(3):297-312.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering