Research Article
BibTex RIS Cite

ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION

Year 2020, Volume: 6 Issue: 3, 327 - 345, 01.04.2020
https://doi.org/10.18186/thermal.712452

Abstract

We investigate the combined effects of homogeneous and heterogeneous reactions in the boundary layer flow
of a viscoelastic nanofluid over a stretching sheet with nonlinear thermal radiation. The incompressible fluid is
electrically conducting with an applied a transverse magnetic field. The conservation equations are solved using the
spectral quasi-linearization method. This analysis is carried out in order to enhance the system performance, with the
source of entropy generation and the impact of Bejan number on viscoelastic nanofluid due to a partial slip in
homogeneous and heterogeneous reactions flow using the spectral quasi-linearization method. Various fluid parameters
of interest such as entropy generation, Bejan number, fluid velocity, shear stress heat and mass transfer rates are studied
quantitatively, and their behaviors are depicted graphically. A comparison of the entropy generation due to the heat
transfer and the fluid friction is made with the help of the Bejan number. Among the findings reported in this study is
that the entropy generation has a significant impact in controlling the rate of heat transfer in the boundary layer region.

References

  • [1] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab IL United States; 1995.
  • [2] Valyi EI. Extrusion of plastics. US Patent; 1992.
  • [3] Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Thermal Sci 2011; 50 (7): 1326-32. https://doi.org/10.1016/j.ijthermalsci.2011.02.019.
  • [4] Chamkha AJ. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction. Int Commun Heat and Mass Transf 2003; 3 0(3): 413-22. https://doi.org/10.1016/S0735-1933(03)00059-9.
  • [5] Putley E. The development of thermal imaging systems. Recent Advances in Medical Therm; 1984.
  • [6] Sandeep N, Sulochana C, Kumar BR. MHD boundary layer flow and heat transfer past a stretching/shrinking sheet in a nanofluid. Journal of Nanofluids 2015; 4(4): 512-17. https://doi.org/10.1166/jon.2014.1181.
  • [7] Sandeep N, Raju C, Sulochana C, Sugunamma V. Effects of aligned magnetic field and radiation on the flow of Ferrofluids over a flat plate with non-uniform heat source/sink. Int J Sci Engg 2015; 8(2): 151-58. https://doi.org/10.12777/ijse.8.2.151-158.
  • [8] Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two-phase model. J Magnet Magn Mat 2015; 37(4), 36 − 43. https://doi.org/10.1016/j.jmmm.2014.08.021
  • [9] Hayat T, Muhammad T, Alsaedi A, Alhuthali M. Magnetohydrodynamic three-dimensional flow of Viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Mag Magnetic Materials 2015; 385;222-29. https://doi.org/10.1016/j.jmmm.2015.02.046
  • [10] Animasaun I, Raju C, Sandeep N. Unequal diffusivities case of Homogeneous–Heterogeneous reactions within Viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alexandria Engg Journal 2016; 55(2):1595-06. https://doi.org/10.1016/j.aej.2016.01.018.
  • [11] Chaudhary M, Merkin J. Homogeneous-Heterogeneous reactions in boundary-layer flow: Effects of loss of reactant Mathematical and Computer Modelling 1996; 2 4(3);21-28. https://doi.org/10.1016/0895- 7177(96)00097-0.
  • [12] Merkin J. A model for isothermal Homogeneous-Heterogeneous reactions in boundary-layer flow. Mathematical and Computer Modelling 1996; 24(8): 125-36. https://doi.org/10.1016/0169-5983(95)00015-6.
  • [13] Shaw, S, Kameswaran PK., Sibanda P. Homogeneous-Heterogeneous reactions in Micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Boundary Value Problems 2013; 1: 77. https://doi.org/10.1186/1687-2770-2013-77.
  • [14] Goyal M, Bhargava R. Boundary layer flow and heat transfer of Viscoelastic nanofluids past a stretching sheet with partial slip conditions. Applied Nanoscience 2014; 4(6): 761-67.DOI: 10.1007/s13204-013-0254-5.
  • [15] Sheikh M, Abbas Z. Homogeneous–Heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching /shrinking sheet with uniform suction and slip effects. Ain Shams Engg J 2015 . https://doi.org/10.1016/j.asej.2015.09.010
  • [16] Bachok N, Ishak A, Pop I. On the stagnation-point flow towards a stretching sheet with Homogeneous– Heteregeneous reactions effects. Commu Non Sci Numerical Simu 2011; 16(11): 4296-02. https://doi.org/10.1016/j.cnsns.2011.01.008.
  • [17] Hayat T, Imtiaz M, Alsaedi A. Effects of Homogeneous-Heterogeneous reactions in flow of Powell-Eyring fluid. Journal of Central South University 2015; 22: 3211-16. https://doi.org/10.1007/s00521-017-2943-6.
  • [18] Mirzazadeh M, Shafaei A, Rashidi F. Entropy analysis for non-linear Viscoelastic fluid in concentric rotating cylinders. Int J Thermal Sci 2008; 47(12): 1701-11. https://doi.org/10.1016/j.ijthermalsci.2007.11.002.
  • [19] Aıboud S, Saouli S. Entropy analysis for Viscoelastic magnetohydrodynamic flow over a stretching surface. Int. Jf Non-Linear Mechanics 2010; 45(5): 482-89. https://doi.org/10.1016/j.ijnonlinmec.2010.01.007.
  • [20] Mishra S, Mondal H, Kundu PK, Sibanda P. Unsteady MHD micropolar fluid in a stretching sheet over an inclined plate with the effect of non-linear thermal radiation and soret-dufour. Journal of Thermal Engineering 2019; 5(6):205-13. https://doi.org/10.18186/thermal.654344.
  • [21] Chaudhary M, Merkin JA. Simple isothermal model for Homogeneous-Heterogeneous reactions in boundary layer flow. I Equal Diffusivities Fluid Dynamics Research 1995; 16(6): 311-33. https://doi.org/10.1016/0169- 5983(95)90813-H.
  • [22] Awad MM. A review of entropy generation in microchannels. Advances in Mechanical Engineering 2015; 7(12): https://doi.org/10.1177/1687814015590297.
  • [23] Bejan A. Advanced engineering thermodynamics. John Wiley & Sons; 2016.
  • [24] Awad MM. A new definition of Bejan number. Thermal Science 2012; 16(4): 1251-5. https://doi.org/10.2298/TSCI12041251A
  • [25] Awad MM, Lage JL. Extending the Bejan number to a general form. Thermal Science 2013; 17(2): 613-33. https://doi.org /10.2298/tsci130211032a.
  • [26] Awad MM. Hagen number versus Bejan number. Thermal Science 2013; 17(4): 1245-50. https://doi.org/10.229 8/TSCI1304245A.
  • [27] Awad MM. An alternative form of the Darcy equation. Thermal Science 2014; 18(2): 617-19. https://doi.org/10. 2298/TSCI131213042A
  • [28] Awad MM. The science and the history of the two Bejan numbers. Int J Heat and Mass Transfer 2016; 94: 101- 03. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.073.
  • [29] Motsa S, Sibanda P, Shateyi S. On a new quasi-linearization method for systems of nonlinear boundary value problems. Mathematical Methods in the Applied Sciences 2011; 34(11): 1406-13. https://doi.org/10.1002/mma. 1449
  • [30] Almakki M, Dey S, Mondal S, Sibanda P. On unsteady three-dimensional axisymmetric MHD nanofluid flow with entropy generation and thermo-diffusion effects. Entropy 2017; 19(7): 168. https://doi.org/10.3390/e19070 168.
  • [31] Chand R, Rana G, Hussein A. On the onsetof thermal instability in a low Prandtl number nanofluid layer in a porous medium. Journal of Applied Fluid Mechanics 2015; 8(2): 265-272. https://doi.org/10.18869/acadpub.jaf m.67.221.22830.
  • [32] Al-Rashed AA, Kolsi L, Hussein AK, Hassen W, Aichouni M, Borjini MN. Numerical study of three dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls. Case Studies in Thermal Engineering 10, 100-110 (2017). https://doi.org/10.1016/j.csite.2017.05.003.
  • [33] Kolsi L, Hussein AK, Borjini MN, Mohammed H, Aȉssia HB. Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with Water- Al2O3 nanofluid. Arabian Journal for Science and Engineering 2014; 39(11): 7483-93. https://doi.org/10.1080/104077782.2016. 1173478.
  • [34] Chand R, Rana G, Hussein A. Effect of suspended particles on the onset of thermal convection in a nanofluid layer for more realistic boundary conditions. Transport in Porous Media 2010; 83(2):425-36; https://doi/10.100 7/s11242-009-9452-8.
  • [35] Mallikarjuna B, Rashad A, Hussein A, Hariprasad Raju S. Transpiration and thermophoresis effects on Non- Darcy convective flow past a rotating cone with thermal radiation. Arabian Journal for Science & Engineering 2016; 41(11): 4691-700. https://doi/10.1007/s13369-016-2252-x.
Year 2020, Volume: 6 Issue: 3, 327 - 345, 01.04.2020
https://doi.org/10.18186/thermal.712452

Abstract

References

  • [1] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab IL United States; 1995.
  • [2] Valyi EI. Extrusion of plastics. US Patent; 1992.
  • [3] Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Thermal Sci 2011; 50 (7): 1326-32. https://doi.org/10.1016/j.ijthermalsci.2011.02.019.
  • [4] Chamkha AJ. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction. Int Commun Heat and Mass Transf 2003; 3 0(3): 413-22. https://doi.org/10.1016/S0735-1933(03)00059-9.
  • [5] Putley E. The development of thermal imaging systems. Recent Advances in Medical Therm; 1984.
  • [6] Sandeep N, Sulochana C, Kumar BR. MHD boundary layer flow and heat transfer past a stretching/shrinking sheet in a nanofluid. Journal of Nanofluids 2015; 4(4): 512-17. https://doi.org/10.1166/jon.2014.1181.
  • [7] Sandeep N, Raju C, Sulochana C, Sugunamma V. Effects of aligned magnetic field and radiation on the flow of Ferrofluids over a flat plate with non-uniform heat source/sink. Int J Sci Engg 2015; 8(2): 151-58. https://doi.org/10.12777/ijse.8.2.151-158.
  • [8] Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two-phase model. J Magnet Magn Mat 2015; 37(4), 36 − 43. https://doi.org/10.1016/j.jmmm.2014.08.021
  • [9] Hayat T, Muhammad T, Alsaedi A, Alhuthali M. Magnetohydrodynamic three-dimensional flow of Viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Mag Magnetic Materials 2015; 385;222-29. https://doi.org/10.1016/j.jmmm.2015.02.046
  • [10] Animasaun I, Raju C, Sandeep N. Unequal diffusivities case of Homogeneous–Heterogeneous reactions within Viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alexandria Engg Journal 2016; 55(2):1595-06. https://doi.org/10.1016/j.aej.2016.01.018.
  • [11] Chaudhary M, Merkin J. Homogeneous-Heterogeneous reactions in boundary-layer flow: Effects of loss of reactant Mathematical and Computer Modelling 1996; 2 4(3);21-28. https://doi.org/10.1016/0895- 7177(96)00097-0.
  • [12] Merkin J. A model for isothermal Homogeneous-Heterogeneous reactions in boundary-layer flow. Mathematical and Computer Modelling 1996; 24(8): 125-36. https://doi.org/10.1016/0169-5983(95)00015-6.
  • [13] Shaw, S, Kameswaran PK., Sibanda P. Homogeneous-Heterogeneous reactions in Micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Boundary Value Problems 2013; 1: 77. https://doi.org/10.1186/1687-2770-2013-77.
  • [14] Goyal M, Bhargava R. Boundary layer flow and heat transfer of Viscoelastic nanofluids past a stretching sheet with partial slip conditions. Applied Nanoscience 2014; 4(6): 761-67.DOI: 10.1007/s13204-013-0254-5.
  • [15] Sheikh M, Abbas Z. Homogeneous–Heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching /shrinking sheet with uniform suction and slip effects. Ain Shams Engg J 2015 . https://doi.org/10.1016/j.asej.2015.09.010
  • [16] Bachok N, Ishak A, Pop I. On the stagnation-point flow towards a stretching sheet with Homogeneous– Heteregeneous reactions effects. Commu Non Sci Numerical Simu 2011; 16(11): 4296-02. https://doi.org/10.1016/j.cnsns.2011.01.008.
  • [17] Hayat T, Imtiaz M, Alsaedi A. Effects of Homogeneous-Heterogeneous reactions in flow of Powell-Eyring fluid. Journal of Central South University 2015; 22: 3211-16. https://doi.org/10.1007/s00521-017-2943-6.
  • [18] Mirzazadeh M, Shafaei A, Rashidi F. Entropy analysis for non-linear Viscoelastic fluid in concentric rotating cylinders. Int J Thermal Sci 2008; 47(12): 1701-11. https://doi.org/10.1016/j.ijthermalsci.2007.11.002.
  • [19] Aıboud S, Saouli S. Entropy analysis for Viscoelastic magnetohydrodynamic flow over a stretching surface. Int. Jf Non-Linear Mechanics 2010; 45(5): 482-89. https://doi.org/10.1016/j.ijnonlinmec.2010.01.007.
  • [20] Mishra S, Mondal H, Kundu PK, Sibanda P. Unsteady MHD micropolar fluid in a stretching sheet over an inclined plate with the effect of non-linear thermal radiation and soret-dufour. Journal of Thermal Engineering 2019; 5(6):205-13. https://doi.org/10.18186/thermal.654344.
  • [21] Chaudhary M, Merkin JA. Simple isothermal model for Homogeneous-Heterogeneous reactions in boundary layer flow. I Equal Diffusivities Fluid Dynamics Research 1995; 16(6): 311-33. https://doi.org/10.1016/0169- 5983(95)90813-H.
  • [22] Awad MM. A review of entropy generation in microchannels. Advances in Mechanical Engineering 2015; 7(12): https://doi.org/10.1177/1687814015590297.
  • [23] Bejan A. Advanced engineering thermodynamics. John Wiley & Sons; 2016.
  • [24] Awad MM. A new definition of Bejan number. Thermal Science 2012; 16(4): 1251-5. https://doi.org/10.2298/TSCI12041251A
  • [25] Awad MM, Lage JL. Extending the Bejan number to a general form. Thermal Science 2013; 17(2): 613-33. https://doi.org /10.2298/tsci130211032a.
  • [26] Awad MM. Hagen number versus Bejan number. Thermal Science 2013; 17(4): 1245-50. https://doi.org/10.229 8/TSCI1304245A.
  • [27] Awad MM. An alternative form of the Darcy equation. Thermal Science 2014; 18(2): 617-19. https://doi.org/10. 2298/TSCI131213042A
  • [28] Awad MM. The science and the history of the two Bejan numbers. Int J Heat and Mass Transfer 2016; 94: 101- 03. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.073.
  • [29] Motsa S, Sibanda P, Shateyi S. On a new quasi-linearization method for systems of nonlinear boundary value problems. Mathematical Methods in the Applied Sciences 2011; 34(11): 1406-13. https://doi.org/10.1002/mma. 1449
  • [30] Almakki M, Dey S, Mondal S, Sibanda P. On unsteady three-dimensional axisymmetric MHD nanofluid flow with entropy generation and thermo-diffusion effects. Entropy 2017; 19(7): 168. https://doi.org/10.3390/e19070 168.
  • [31] Chand R, Rana G, Hussein A. On the onsetof thermal instability in a low Prandtl number nanofluid layer in a porous medium. Journal of Applied Fluid Mechanics 2015; 8(2): 265-272. https://doi.org/10.18869/acadpub.jaf m.67.221.22830.
  • [32] Al-Rashed AA, Kolsi L, Hussein AK, Hassen W, Aichouni M, Borjini MN. Numerical study of three dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls. Case Studies in Thermal Engineering 10, 100-110 (2017). https://doi.org/10.1016/j.csite.2017.05.003.
  • [33] Kolsi L, Hussein AK, Borjini MN, Mohammed H, Aȉssia HB. Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with Water- Al2O3 nanofluid. Arabian Journal for Science and Engineering 2014; 39(11): 7483-93. https://doi.org/10.1080/104077782.2016. 1173478.
  • [34] Chand R, Rana G, Hussein A. Effect of suspended particles on the onset of thermal convection in a nanofluid layer for more realistic boundary conditions. Transport in Porous Media 2010; 83(2):425-36; https://doi/10.100 7/s11242-009-9452-8.
  • [35] Mallikarjuna B, Rashad A, Hussein A, Hariprasad Raju S. Transpiration and thermophoresis effects on Non- Darcy convective flow past a rotating cone with thermal radiation. Arabian Journal for Science & Engineering 2016; 41(11): 4691-700. https://doi/10.1007/s13369-016-2252-x.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mohammed Almakki This is me 0000-0002-9348-4651

Hiranmoy Mondal This is me

Precious Sibanda This is me 0000-0003-2115-4642

Publication Date April 1, 2020
Submission Date November 2, 2017
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

APA Almakki, M., Mondal, H., & Sibanda, P. (2020). ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION. Journal of Thermal Engineering, 6(3), 327-345. https://doi.org/10.18186/thermal.712452
AMA Almakki M, Mondal H, Sibanda P. ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION. Journal of Thermal Engineering. April 2020;6(3):327-345. doi:10.18186/thermal.712452
Chicago Almakki, Mohammed, Hiranmoy Mondal, and Precious Sibanda. “ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION”. Journal of Thermal Engineering 6, no. 3 (April 2020): 327-45. https://doi.org/10.18186/thermal.712452.
EndNote Almakki M, Mondal H, Sibanda P (April 1, 2020) ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION. Journal of Thermal Engineering 6 3 327–345.
IEEE M. Almakki, H. Mondal, and P. Sibanda, “ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION”, Journal of Thermal Engineering, vol. 6, no. 3, pp. 327–345, 2020, doi: 10.18186/thermal.712452.
ISNAD Almakki, Mohammed et al. “ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION”. Journal of Thermal Engineering 6/3 (April 2020), 327-345. https://doi.org/10.18186/thermal.712452.
JAMA Almakki M, Mondal H, Sibanda P. ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION. Journal of Thermal Engineering. 2020;6:327–345.
MLA Almakki, Mohammed et al. “ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION”. Journal of Thermal Engineering, vol. 6, no. 3, 2020, pp. 327-45, doi:10.18186/thermal.712452.
Vancouver Almakki M, Mondal H, Sibanda P. ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION. Journal of Thermal Engineering. 2020;6(3):327-45.

Cited By
















IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering