Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 6 - Special Issue 12: 22nd Thermal Science and Technology Congress, 388 - 402, 01.12.2020
https://doi.org/10.18186/thermal.833673

Abstract

References

  • European Wind Energy Association, EU Energy Policy After 2020, Available from: www.ewea.org, [Accessed 28th November 2020].
  • Sunderland K, Woolmington T, Blackledge J, Conlon M. Small wind turbines in turbulent (urban) environments: A consideration of normal and Weibull distributions for power prediction. Journal of Wind Engineering and Industrial Aerodynamics. 2013;121:70–81. Doi: https://doi.org/10.1016/j.jweia.2013.08.001
  • Dumitrache A, Frunzulica F, Dumitrescu H, Suatean B. ‘Influences of some parameters on the performance of a small vertical axis wind turbine’ Renew. Energy Environ. 2016;1:1-5. Doi: https://doi.org/10.1051/rees/2016024.
  • Yang Y, Guo Z, Zhang Y, Jinyama H, Li Q. Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies. 2017;10:1721. doi:10.3390/en10111721
  • Chen Y, Lian Y. Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine. Engineering Applications of Computational Fluid Mechanics. 2015;9(1):21–32. Doi: http://dx.doi.org/10.1080/19942060.2015.1004790
  • Healy JV. The influence of blade camber on the output of vertical-axis wind turbines. Wind Engineering. 1978;2(3):146–55.
  • Beri H, Yao Y. Effect of camber airfoil on self starting of vertical axis wind turbine. Journal of Environmental Science and Technology. 2011;4:302–12. Doi: https://dx.doi.org/10.3923/jest.2011.302.312
  • Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy. 2015;90:784–95. Doi: https://doi.org/10.1016/j.energy.2015.07.115
  • Castelli MR, De Betta S, Benini E. Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine. International Journal of Aerospace and Mechanical Engineering 2012; 6(1):68-74. Doi: doi.org/10.5281/zenodo.1079974
  • Eboibi O. The Influence of Blade Chord on the Aerodynamics and Performance of Vertical Axis Wind Turbines. Thesis Doctor of Philosophy, University of Sheffield. 2013.
  • Wang S, Ingham DB, Ma L, Pourkashanian M, Tao Z. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers & Fluids. 2010;39(9):1529–41. Doi: https://doi.org/10.1016/j.compfluid.2010.05.004
  • Simao Ferreira C, Zuijlen AH, Bijl H, Bussel GV, Kuik GV. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: verification and validation with particle image velocimetry data. Wind Energy. 2010;13:1–17.
  • Nobile R, Vahdati M, Barlow JF, Mewburn-Crook A. Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. Journal of Wind Engineering and Industrial Aerodynamics. 2014;125:168–79. Doi: https://doi.org/10.1016/j.jweia.2013.12.005
  • Rezaeiha A, Kalkman I, Blocken B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy. 2017;107:373–85. Doi: https://doi.org/10.1016/j.renene.2017.02.006
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994;32(8):1598–605. Doi: https://doi.org/10.2514/3.12149
  • Rezaeiha A, Kalkman I, Blocken B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy. 2017;197:132–50.

NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR

Year 2020, Volume: 6 Issue: 6 - Special Issue 12: 22nd Thermal Science and Technology Congress, 388 - 402, 01.12.2020
https://doi.org/10.18186/thermal.833673

Abstract

A thorough understanding of the various parameters that affect the vertical axis wind turbine performance and lifespan will make design this model of turbine not difficult task. This article presents a study of the blade profile effect on the aerodynamic performance of a vertical axis wind turbineDarrieus H-rotor. A complete series of simulations based on complete unstable URANS calculations are performed for a three-blade Darrieus wind turbine. Fluent’s software is used for the numerical solution. The aerofoils of blade chosen for testing were NACA 0012, 0015, 0018, 0021 and -60 pitch angle is taken as the reference case for comparison. In order to quantify the influence of the profile of the blade on the performance, the characteristics of the flow field around the rotor of the different configurations are studied. For different values of the tip speed ratio, dynamic quantities, such as torque and rotor power, are presented and analyzed. Also in this investigation of the flow flied, two parameters are carefully investigated: mesh resolution and time step size. In the analysis, it appears that these parameters affect result accuracy. Finally, the numerical result shows that the variation of blade profile directly affected directly the power production.

References

  • European Wind Energy Association, EU Energy Policy After 2020, Available from: www.ewea.org, [Accessed 28th November 2020].
  • Sunderland K, Woolmington T, Blackledge J, Conlon M. Small wind turbines in turbulent (urban) environments: A consideration of normal and Weibull distributions for power prediction. Journal of Wind Engineering and Industrial Aerodynamics. 2013;121:70–81. Doi: https://doi.org/10.1016/j.jweia.2013.08.001
  • Dumitrache A, Frunzulica F, Dumitrescu H, Suatean B. ‘Influences of some parameters on the performance of a small vertical axis wind turbine’ Renew. Energy Environ. 2016;1:1-5. Doi: https://doi.org/10.1051/rees/2016024.
  • Yang Y, Guo Z, Zhang Y, Jinyama H, Li Q. Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies. 2017;10:1721. doi:10.3390/en10111721
  • Chen Y, Lian Y. Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine. Engineering Applications of Computational Fluid Mechanics. 2015;9(1):21–32. Doi: http://dx.doi.org/10.1080/19942060.2015.1004790
  • Healy JV. The influence of blade camber on the output of vertical-axis wind turbines. Wind Engineering. 1978;2(3):146–55.
  • Beri H, Yao Y. Effect of camber airfoil on self starting of vertical axis wind turbine. Journal of Environmental Science and Technology. 2011;4:302–12. Doi: https://dx.doi.org/10.3923/jest.2011.302.312
  • Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy. 2015;90:784–95. Doi: https://doi.org/10.1016/j.energy.2015.07.115
  • Castelli MR, De Betta S, Benini E. Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine. International Journal of Aerospace and Mechanical Engineering 2012; 6(1):68-74. Doi: doi.org/10.5281/zenodo.1079974
  • Eboibi O. The Influence of Blade Chord on the Aerodynamics and Performance of Vertical Axis Wind Turbines. Thesis Doctor of Philosophy, University of Sheffield. 2013.
  • Wang S, Ingham DB, Ma L, Pourkashanian M, Tao Z. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers & Fluids. 2010;39(9):1529–41. Doi: https://doi.org/10.1016/j.compfluid.2010.05.004
  • Simao Ferreira C, Zuijlen AH, Bijl H, Bussel GV, Kuik GV. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: verification and validation with particle image velocimetry data. Wind Energy. 2010;13:1–17.
  • Nobile R, Vahdati M, Barlow JF, Mewburn-Crook A. Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. Journal of Wind Engineering and Industrial Aerodynamics. 2014;125:168–79. Doi: https://doi.org/10.1016/j.jweia.2013.12.005
  • Rezaeiha A, Kalkman I, Blocken B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy. 2017;107:373–85. Doi: https://doi.org/10.1016/j.renene.2017.02.006
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994;32(8):1598–605. Doi: https://doi.org/10.2514/3.12149
  • Rezaeiha A, Kalkman I, Blocken B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy. 2017;197:132–50.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Abdellah Boumehani This is me 0000-0003-1376-4993

Belkheir Noura This is me 0000-0002-2610-4057

Rabah Kerfah This is me

Sofiane Khelladi This is me 0000-0002-2095-1087

Ivan Dobrev This is me 0000-0002-6089-3950

Publication Date December 1, 2020
Submission Date November 22, 2018
Published in Issue Year 2020 Volume: 6 Issue: 6 - Special Issue 12: 22nd Thermal Science and Technology Congress

Cite

APA Boumehani, A., Noura, B., Kerfah, R., Khelladi, S., et al. (2020). NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR. Journal of Thermal Engineering, 6(6), 388-402. https://doi.org/10.18186/thermal.833673
AMA Boumehani A, Noura B, Kerfah R, Khelladi S, Dobrev I. NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR. Journal of Thermal Engineering. December 2020;6(6):388-402. doi:10.18186/thermal.833673
Chicago Boumehani, Abdellah, Belkheir Noura, Rabah Kerfah, Sofiane Khelladi, and Ivan Dobrev. “NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR”. Journal of Thermal Engineering 6, no. 6 (December 2020): 388-402. https://doi.org/10.18186/thermal.833673.
EndNote Boumehani A, Noura B, Kerfah R, Khelladi S, Dobrev I (December 1, 2020) NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR. Journal of Thermal Engineering 6 6 388–402.
IEEE A. Boumehani, B. Noura, R. Kerfah, S. Khelladi, and I. Dobrev, “NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR”, Journal of Thermal Engineering, vol. 6, no. 6, pp. 388–402, 2020, doi: 10.18186/thermal.833673.
ISNAD Boumehani, Abdellah et al. “NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR”. Journal of Thermal Engineering 6/6 (December 2020), 388-402. https://doi.org/10.18186/thermal.833673.
JAMA Boumehani A, Noura B, Kerfah R, Khelladi S, Dobrev I. NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR. Journal of Thermal Engineering. 2020;6:388–402.
MLA Boumehani, Abdellah et al. “NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR”. Journal of Thermal Engineering, vol. 6, no. 6, 2020, pp. 388-02, doi:10.18186/thermal.833673.
Vancouver Boumehani A, Noura B, Kerfah R, Khelladi S, Dobrev I. NUMERICAL INVESTIGATION OF THE BLADE PROFILE EFFECT ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL-AXIS WIND TURBINE DARRIEUS H-ROTOR. Journal of Thermal Engineering. 2020;6(6):388-402.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering