Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 71 - 82, 01.02.2021
https://doi.org/10.18186/thermal.869098

Abstract

References

  • [1] Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences. 2008; 20 (1): 14-27. doi: 10.1016/s1001-0742(08)60002-9.
  • [2] Bernardo P, Clarizia G. 30 years of membrane technology for gas separation. Chemical Engineering Transactions 2013; 32: 1999-2004. https://doi.org/10.3303/CET1332334.
  • [3] Miller SJ, Koros WJ, Vu DQ. Mixed matrix membrane technology: enhancing gas separations with polymer/molecular sieve composites. Studies in Surface Science and Catalysis 2007; 170: 1590-1596. https://doi.org/10.1016/S0167-2991(07)81035-4. doi: 10.1002/app.30578.
  • [4] Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: A review. Journal of Applied Polymer Science. 2009; 114 (1): 630-642. doi: 10.1002/app.30578.
  • [5] Wang Z, Chen T, Xu J. Gas transport properties of novel cardo poly (aryl ether ketone) s with pendant alkyl groups. Macromolecules. 2000; 33 (15): 5672-5679. https://doi.org/10.1021/ma9921807.
  • [6] Torres-Trueba A, Ruiz-Treviño FA, Luna-Bárcenas G, Ortiz-Estrada CH. Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. Journal of Membrane Science. 2008; 320 (1-2): 431-435. doi: 10.1016/j.memsci.2008.04.024.
  • [7] Bos A, Punt IGM, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science. 1999; 155 (1): 67-78. https://doi.org/10.1016/S0376-7388(98)00299-3.
  • [8] Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control. 2013; 12: 84-107. doi: 10.1016/j.ijggc.2012.10.009.
  • [9] Robeson LM, Liu Q, Free-man BD, Paul DR. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. Journal of Membrane Science. 2015; 476: 421-431. doi: 10.1016/j.memsci.2014.11.058.
  • [10] Wessling M, Schoeman S, Boomgaard Tvd, Smolders CA. Plasticization of gas separation membranes. Gas Separation & Purification. 1991; 5 (4): 222-228. doi: 0950-4214/91/040222-07.
  • [11] Mondal MK. Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine. Indian Journal Chemical Technology. 2010; 17: 431-435.
  • [12] Speyer D, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region. Journal of Chemical & Engineering Data 2009; 55 (1): 283-290. https://doi.org/10.1021/je9003383.
  • [13] Loo Sv, Elk EPv, Versteeg GF. The removal of carbon dioxide with activated solutions of methyl-diethanol-amine. Journal of Petroleum Science and Engineering. 2007; 55 (1-2): 135-145. doi: 10.1016/j.petrol.2006.04.017.
  • [14] Baker RW. Membrane Technology and Applications: Overview of membrane science and technology. 3 ed. New York: Willey; 2012. 1-14. https://doi.org/10.1002/9781118359686.ch1.
  • [15] Scott K. Handbook of industrial membranes. Oxford: Elsevier; 1995.
  • [16] Barton AF. Handbook of solubility parameters and other cohesion parameters. 2nd ed. Florida: CRC Press; 1991.
  • [17] Barton AF. Handbook of Poylmer-Liquid Interaction Parameters and Solubility Parameters. 1st ed. Florida: CRC Press; 1990. https://doi.org/10.1002/pat.1992.220030107.
  • [18] Verevkin SP. Thermochemistry of amines: experimental standard molar enthalpies of formation of some aliphatic and aromatic amines. Journal of Chemical Thermodynamics 29. 1997; 8: 891-899. https://doi.org/10.1006/jcht.1997.0212.
  • [19] Cheremisinoff NP. Industrial Organic Solvents. Industrial Solvents Handbook. Second Edition. New York: Marcel Dekker; 2003. 29-32.
  • [20] Leiknes TO. The development of a biofilm membrane bioreactor [PhD. Thesis]. KSA: PhD Dissertation, King Abdullah University of Science and Technology 2008. https://doi.org/10.1016/j.desal.2005.12.049.
  • [21] Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Separation and Purification Technology. 2010; 72 (2): 194-202. doi: 10.1016/j.seppur.2010.02.009.
  • [22] Rafiq S, Man Z, Maitra S, Maulud A, Ahmad F, Muhammad N. Preparation of asymmetric polysulfone/polyimide blended membranes for CO2 separation. Korean Journal of Chemical Engineering. 2011; 28 (10): 2050-2056. doi: 10.1007/s11814-011-0053-1.
  • [23] Devi KBR, Madivanane R. Normal coordinate analysis of polyvinyl acetate. IRACST-Engineering Science and Technology. 2012; 2 (4): 795-799.
  • [24] Feng S, Ren J, Li H, Hua K, Li X, Deng M. Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation. Journal of Energy Chemistry. 2013; 22 (6): 837-844. doi: 10.1016/s2095-4956(14)60262-x.
  • [25] Mansourpanah Y, Gheshlaghi A. Effects of adding different ethanol amines during membrane preparation on the performance and morphology of nanoporous PES membranes. Journal of Polymer Research. 2012; 19 (12): 1-7. doi: 10.1007/s10965-012-0013-4.
  • [26] Zhao Y-L, Jones WH, Monnat F, Wudl F, Houk KN. Mechanisms of thermal decompositions of polysulfones: A DFT and CBS-QB3 study. Macromolecules. 2005; 38 (24): 10279-10285. https://doi.org/10.1021/ma051503y.
  • [27] Holland BJ, Hay JN. The thermal degradation of poly (vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer. 2002; 43 (8): 2207-2211. https://doi.org/10.1016/S0032-3861(02)00038-1.
  • [28] Blazevska-Gilev J, Spaseska D. Thermal degradation of PVAc. Journal of the University of Chemical Technology and Metallurgy. 2005; 40 (4): 287-290.
  • [29] Simon P, Rybar M. Kinetics of polymer degradation involving the splitting off of small molecules: Part 8. Thermal degradation of polyvinyl esters. Polymer Degradation and Stability 1992; 38 (3): 255-259. https://doi.org/10.1016/0141-3910(92)90121-K.
  • [30] Pourya M, Ibrahim NA, Yunus WMZW, Yusof NA. Separation of CO2 from CH4 by pure PSF and PSF/PVP blend membranes: Effects of type of nonsolvent, solvent, and PVP concentration. Journal of Applied Polymer Science. 2013; 130 (2): 1139-1147. doi: 10.1002/app.39288.
  • [31] Linares A, Acosta JL. Structural characterization of polymer blends based on polysulfones. Journal of Applied Polymer Science. 2004; 92 (5): 3030-3039. https://doi.org/10.1002/app.20263.
  • [32] Stuart BH. Polymer analysis. Australia: John Wiley & Sons; 2008.
  • [33] Ahmed I, Idris A, Noordin MY, Rajput R. High Performance Ultrafiltration Membranes Prepared by the Application of Modified Microwave Irradiation Technique. Industrial & Engineering Chemistry Research. 2011; 50 (4): 2272-2283. doi: 10.1021/ie1017223.
  • [34] BumPark H, Kim CK, Lee YM. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. Journal of Membrane Science. 2002; 204 (1): 257-269. https://doi.org/10.1016/S0376-7388(02)00048-0.
  • [35] Siesler HW. Rheo-optical Fourier-Transform infrared spectroscopy: Vibrational spectra and mechanical properties of polymers. In Analysis/Networks/Peptides. Springer. 1984: 1-77. https://doi.org/10.1007/BFb0017101.
  • [36] Raslan R, Mohammad AW. Polysulfone/Pluronic F127 Blend Ultrafiltration Membranes: Preparation and Characterizations. Journal of Applied Sciences. 2010; 10 (21): 2628-2632. DOI: 10.3923/jas.2010.2628.2632.
  • [37] Shillady D. Essentials of physical chemistry. New York: Taylor & Francis Group; 2011. 291-294.
  • [38] Jiang L, Chung T, Kulprathipanja S. An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. Journal of Membrane Science. 2006; 276 (1): 113-125. doi: 10.1016/j.memsci.2005.09.041.
  • [39] Gholinia M, Moosavi SK, Gholinia S, Ganji DD. Numerical simulation of nanoparticle shape and thermal ray on a CuO/C2H6O2–H2O hybrid base nanofluid inside a porous enclosure using Darcy's law. Heat Transfer—Asian Research. 2019; 48 (7): 3278-3294. https://doi.org/10.1002/htj.21541.
  • [40] Gholinia M, Moosavi SK, Pourfallah M, Gholinia S, Ganji DD.. A numerical treatment of the TiO2/C2H6O2–H2O hybrid base nanofluid inside a porous cavity under the impact of shape factor in MHD flow. International Journal of Ambient Energy. 2019; 5 (21): 1-8. https://doi.org/10.1080/01430750.2019.1614996.
  • [41] Gholinia M, Armin M, Ranjbar AA, Ganji DD. Numerical thermal study on CNTs/C2H6O2–H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Studies in Thermal Engineering. 2019; 14 (1): 100490-100495. https://doi.org/10.1016/j.csite.2019.100490.
  • [42] Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD. Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2H2O hybrid base fluid with thermal radiation. Journal of the Taiwan Institute of Chemical Engineers. 2019; 97 (1): 12-23. https://doi.org/10.1016/j.jtice.2019.01.028.
  • [43] Ghadikolaei SS, Gholinia M. Terrific effect of H2 on 3D free convection MHD flow of C2H6O2H2O hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and nanoparticle shapes effects. International Journal of Hydrogen Energy. 2019; 44 (31): 17072-17083. https://doi.org/10.1016/j.ijhydene.2019.04.171.
  • [44] Gholinia M, Pourfallah M, Chamani HR. Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering. 2018; 12 (1): 497-509. https://doi.org/10.1016/j.csite.2018.07.003.

CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION

Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 71 - 82, 01.02.2021
https://doi.org/10.18186/thermal.869098

Abstract

The limited performance of pure glassy and rubbery polymeric membranes for natural gas purification are due to their intrinsic properties. Optimizing their properties by blending both polymers are expected to address the shortage. The foremost objective of this research is to synthesis enhance polymer blend membranes (EPBM) using glassy polysulfone (PSU) and rubbery polyvinyl acetate (PVAc) with the addition of amine for carbon dioxide (CO2) removal from methane (CH4). The EPBM were developed by varying the composition of PVAc ranging from 5 to 20 wt. % with 95 to 80 wt. % base PSU in dimethylacetamide (DMAc) solvent. The amines composition was added to the blend and kept at 10 wt. % over solvent. The findings showed good miscibility between PSU and PVAc blends and the original functional groups of polymers and amines were shown by FTIR with very few spectral peak shifts. The synthesized EPBM were found to have homogenous surfaces and a packed bed sphere structure as shown by FESEM images. Increasing the composition of PVAc from 5 to 20 wt. % has significantly reduced the glass transition temperature (Tg) of PSU from 185.09oC to 155.75oC.

References

  • [1] Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences. 2008; 20 (1): 14-27. doi: 10.1016/s1001-0742(08)60002-9.
  • [2] Bernardo P, Clarizia G. 30 years of membrane technology for gas separation. Chemical Engineering Transactions 2013; 32: 1999-2004. https://doi.org/10.3303/CET1332334.
  • [3] Miller SJ, Koros WJ, Vu DQ. Mixed matrix membrane technology: enhancing gas separations with polymer/molecular sieve composites. Studies in Surface Science and Catalysis 2007; 170: 1590-1596. https://doi.org/10.1016/S0167-2991(07)81035-4. doi: 10.1002/app.30578.
  • [4] Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: A review. Journal of Applied Polymer Science. 2009; 114 (1): 630-642. doi: 10.1002/app.30578.
  • [5] Wang Z, Chen T, Xu J. Gas transport properties of novel cardo poly (aryl ether ketone) s with pendant alkyl groups. Macromolecules. 2000; 33 (15): 5672-5679. https://doi.org/10.1021/ma9921807.
  • [6] Torres-Trueba A, Ruiz-Treviño FA, Luna-Bárcenas G, Ortiz-Estrada CH. Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. Journal of Membrane Science. 2008; 320 (1-2): 431-435. doi: 10.1016/j.memsci.2008.04.024.
  • [7] Bos A, Punt IGM, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science. 1999; 155 (1): 67-78. https://doi.org/10.1016/S0376-7388(98)00299-3.
  • [8] Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control. 2013; 12: 84-107. doi: 10.1016/j.ijggc.2012.10.009.
  • [9] Robeson LM, Liu Q, Free-man BD, Paul DR. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. Journal of Membrane Science. 2015; 476: 421-431. doi: 10.1016/j.memsci.2014.11.058.
  • [10] Wessling M, Schoeman S, Boomgaard Tvd, Smolders CA. Plasticization of gas separation membranes. Gas Separation & Purification. 1991; 5 (4): 222-228. doi: 0950-4214/91/040222-07.
  • [11] Mondal MK. Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine. Indian Journal Chemical Technology. 2010; 17: 431-435.
  • [12] Speyer D, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region. Journal of Chemical & Engineering Data 2009; 55 (1): 283-290. https://doi.org/10.1021/je9003383.
  • [13] Loo Sv, Elk EPv, Versteeg GF. The removal of carbon dioxide with activated solutions of methyl-diethanol-amine. Journal of Petroleum Science and Engineering. 2007; 55 (1-2): 135-145. doi: 10.1016/j.petrol.2006.04.017.
  • [14] Baker RW. Membrane Technology and Applications: Overview of membrane science and technology. 3 ed. New York: Willey; 2012. 1-14. https://doi.org/10.1002/9781118359686.ch1.
  • [15] Scott K. Handbook of industrial membranes. Oxford: Elsevier; 1995.
  • [16] Barton AF. Handbook of solubility parameters and other cohesion parameters. 2nd ed. Florida: CRC Press; 1991.
  • [17] Barton AF. Handbook of Poylmer-Liquid Interaction Parameters and Solubility Parameters. 1st ed. Florida: CRC Press; 1990. https://doi.org/10.1002/pat.1992.220030107.
  • [18] Verevkin SP. Thermochemistry of amines: experimental standard molar enthalpies of formation of some aliphatic and aromatic amines. Journal of Chemical Thermodynamics 29. 1997; 8: 891-899. https://doi.org/10.1006/jcht.1997.0212.
  • [19] Cheremisinoff NP. Industrial Organic Solvents. Industrial Solvents Handbook. Second Edition. New York: Marcel Dekker; 2003. 29-32.
  • [20] Leiknes TO. The development of a biofilm membrane bioreactor [PhD. Thesis]. KSA: PhD Dissertation, King Abdullah University of Science and Technology 2008. https://doi.org/10.1016/j.desal.2005.12.049.
  • [21] Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Separation and Purification Technology. 2010; 72 (2): 194-202. doi: 10.1016/j.seppur.2010.02.009.
  • [22] Rafiq S, Man Z, Maitra S, Maulud A, Ahmad F, Muhammad N. Preparation of asymmetric polysulfone/polyimide blended membranes for CO2 separation. Korean Journal of Chemical Engineering. 2011; 28 (10): 2050-2056. doi: 10.1007/s11814-011-0053-1.
  • [23] Devi KBR, Madivanane R. Normal coordinate analysis of polyvinyl acetate. IRACST-Engineering Science and Technology. 2012; 2 (4): 795-799.
  • [24] Feng S, Ren J, Li H, Hua K, Li X, Deng M. Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation. Journal of Energy Chemistry. 2013; 22 (6): 837-844. doi: 10.1016/s2095-4956(14)60262-x.
  • [25] Mansourpanah Y, Gheshlaghi A. Effects of adding different ethanol amines during membrane preparation on the performance and morphology of nanoporous PES membranes. Journal of Polymer Research. 2012; 19 (12): 1-7. doi: 10.1007/s10965-012-0013-4.
  • [26] Zhao Y-L, Jones WH, Monnat F, Wudl F, Houk KN. Mechanisms of thermal decompositions of polysulfones: A DFT and CBS-QB3 study. Macromolecules. 2005; 38 (24): 10279-10285. https://doi.org/10.1021/ma051503y.
  • [27] Holland BJ, Hay JN. The thermal degradation of poly (vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer. 2002; 43 (8): 2207-2211. https://doi.org/10.1016/S0032-3861(02)00038-1.
  • [28] Blazevska-Gilev J, Spaseska D. Thermal degradation of PVAc. Journal of the University of Chemical Technology and Metallurgy. 2005; 40 (4): 287-290.
  • [29] Simon P, Rybar M. Kinetics of polymer degradation involving the splitting off of small molecules: Part 8. Thermal degradation of polyvinyl esters. Polymer Degradation and Stability 1992; 38 (3): 255-259. https://doi.org/10.1016/0141-3910(92)90121-K.
  • [30] Pourya M, Ibrahim NA, Yunus WMZW, Yusof NA. Separation of CO2 from CH4 by pure PSF and PSF/PVP blend membranes: Effects of type of nonsolvent, solvent, and PVP concentration. Journal of Applied Polymer Science. 2013; 130 (2): 1139-1147. doi: 10.1002/app.39288.
  • [31] Linares A, Acosta JL. Structural characterization of polymer blends based on polysulfones. Journal of Applied Polymer Science. 2004; 92 (5): 3030-3039. https://doi.org/10.1002/app.20263.
  • [32] Stuart BH. Polymer analysis. Australia: John Wiley & Sons; 2008.
  • [33] Ahmed I, Idris A, Noordin MY, Rajput R. High Performance Ultrafiltration Membranes Prepared by the Application of Modified Microwave Irradiation Technique. Industrial & Engineering Chemistry Research. 2011; 50 (4): 2272-2283. doi: 10.1021/ie1017223.
  • [34] BumPark H, Kim CK, Lee YM. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. Journal of Membrane Science. 2002; 204 (1): 257-269. https://doi.org/10.1016/S0376-7388(02)00048-0.
  • [35] Siesler HW. Rheo-optical Fourier-Transform infrared spectroscopy: Vibrational spectra and mechanical properties of polymers. In Analysis/Networks/Peptides. Springer. 1984: 1-77. https://doi.org/10.1007/BFb0017101.
  • [36] Raslan R, Mohammad AW. Polysulfone/Pluronic F127 Blend Ultrafiltration Membranes: Preparation and Characterizations. Journal of Applied Sciences. 2010; 10 (21): 2628-2632. DOI: 10.3923/jas.2010.2628.2632.
  • [37] Shillady D. Essentials of physical chemistry. New York: Taylor & Francis Group; 2011. 291-294.
  • [38] Jiang L, Chung T, Kulprathipanja S. An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. Journal of Membrane Science. 2006; 276 (1): 113-125. doi: 10.1016/j.memsci.2005.09.041.
  • [39] Gholinia M, Moosavi SK, Gholinia S, Ganji DD. Numerical simulation of nanoparticle shape and thermal ray on a CuO/C2H6O2–H2O hybrid base nanofluid inside a porous enclosure using Darcy's law. Heat Transfer—Asian Research. 2019; 48 (7): 3278-3294. https://doi.org/10.1002/htj.21541.
  • [40] Gholinia M, Moosavi SK, Pourfallah M, Gholinia S, Ganji DD.. A numerical treatment of the TiO2/C2H6O2–H2O hybrid base nanofluid inside a porous cavity under the impact of shape factor in MHD flow. International Journal of Ambient Energy. 2019; 5 (21): 1-8. https://doi.org/10.1080/01430750.2019.1614996.
  • [41] Gholinia M, Armin M, Ranjbar AA, Ganji DD. Numerical thermal study on CNTs/C2H6O2–H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Studies in Thermal Engineering. 2019; 14 (1): 100490-100495. https://doi.org/10.1016/j.csite.2019.100490.
  • [42] Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD. Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2H2O hybrid base fluid with thermal radiation. Journal of the Taiwan Institute of Chemical Engineers. 2019; 97 (1): 12-23. https://doi.org/10.1016/j.jtice.2019.01.028.
  • [43] Ghadikolaei SS, Gholinia M. Terrific effect of H2 on 3D free convection MHD flow of C2H6O2H2O hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and nanoparticle shapes effects. International Journal of Hydrogen Energy. 2019; 44 (31): 17072-17083. https://doi.org/10.1016/j.ijhydene.2019.04.171.
  • [44] Gholinia M, Pourfallah M, Chamani HR. Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering. 2018; 12 (1): 497-509. https://doi.org/10.1016/j.csite.2018.07.003.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Asim Mushtaq This is me 0000-0001-9930-436X

Hilmi Mukhtar This is me 0000-0002-1862-0924

Azmi Shariff This is me 0000-0001-8524-1994

Publication Date February 1, 2021
Submission Date November 12, 2019
Published in Issue Year 2021 Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,

Cite

APA Mushtaq, A., Mukhtar, H., & Shariff, A. (2021). CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION. Journal of Thermal Engineering, 7(2), 71-82. https://doi.org/10.18186/thermal.869098
AMA Mushtaq A, Mukhtar H, Shariff A. CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION. Journal of Thermal Engineering. February 2021;7(2):71-82. doi:10.18186/thermal.869098
Chicago Mushtaq, Asim, Hilmi Mukhtar, and Azmi Shariff. “CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION”. Journal of Thermal Engineering 7, no. 2 (February 2021): 71-82. https://doi.org/10.18186/thermal.869098.
EndNote Mushtaq A, Mukhtar H, Shariff A (February 1, 2021) CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION. Journal of Thermal Engineering 7 2 71–82.
IEEE A. Mushtaq, H. Mukhtar, and A. Shariff, “CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 71–82, 2021, doi: 10.18186/thermal.869098.
ISNAD Mushtaq, Asim et al. “CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION”. Journal of Thermal Engineering 7/2 (February 2021), 71-82. https://doi.org/10.18186/thermal.869098.
JAMA Mushtaq A, Mukhtar H, Shariff A. CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION. Journal of Thermal Engineering. 2021;7:71–82.
MLA Mushtaq, Asim et al. “CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 71-82, doi:10.18186/thermal.869098.
Vancouver Mushtaq A, Mukhtar H, Shariff A. CHARACTERIZATION OF SYNTHESIZED POLYMERIC BLEND MEMBRANES ENHANCED BY METHYL DIETHANOLAMINE FOR EFFICIENT CO2 SEPARATION. Journal of Thermal Engineering. 2021;7(2):71-82.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering