Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 196 - 214, 01.02.2021
https://doi.org/10.18186/thermal.871439

Abstract

References

  • [1] S. Howard. The UNESCO courier. 2019. https://en.unesco.org/news/billions-deprived-right-water.
  • [2] Omid Mahian, Ali Kianifar, Raviwat Srisomba, Phubate Thiangtham. Solar distillation practice for water desalination systems. Journal of Thermal Engineering 2015;1:287-288.
  • [3] Law Torres Sevilla, Jovana Radulovic. Mathematical modelling of low grade thermal energy storage using an encapsulated liquid medium. Journal of Thermal Engineering 2020;6:214-226. https://doi.org/10.18186/thermal.711327.
  • [4] Korti abdel illah nabil. Numerical simulation on the effect of latent heat thermal energy storage unit. Journal of Thermal Engineering 2016;2:598-606. https://doi.org/10.18186/jte.00934.
  • [5] Ihsan Ullah, Mohammad G. Rasul. Recent developments in solar thermal desalination technologies: A review. Energies 2019;12:119. https://doi:10.3390/en12010119.
  • [6] Edward Jones, Manzoor Qadir, Michelle T. H. van Vliet, Vladimir Smakhtin, Seongmu Kang. The state of desalination and brine production: A global outlook. Science of The Total Environment 2019;657:1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076.
  • [7] O.K. Buros. The ABCs of Desalting. International Desalination Association, USA, second edition 1990.
  • [8] Thomas M. Missimer, Robert G. Malivab. Environmental issues in seawater reverse osmosis desalination: Intakes and Outfalls. Desalination 2018;434:198-215. https://doi.org/10.1016/j.desal.2017.07.012.
  • [9] Mahmoud Shatat, Saffa B. Riffat. Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies 2014;9:1-19. https://doi.org/10.1093/ijlct/cts025.
  • [10] D. B. Singh, G. N. Tiwari. Enhancement in energy metrics of double slope solar still by incorporating N identical PVT collectors. Solar Energy 2017;143:142-161. https://doi.org/10.1016/j.solener.2016.12.039.
  • [11] Vishwanath Kumar Panangipalli, Anil Kumar, Om Prakash, Ajay Kaviti. Solar stills system design: A review. Renewable and Sustainable Energy Reviews 2015;51:153-181. https://doi.org/10.1016/j.rser.2015.04.103.
  • [12] M.M.A Khan, NI Ibrahim, IM Mahbubul, HM Ali, R Saidur, FA Al-Sulaiman. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 2018;166:334-350. https://doi.org/10.1016/j.solener.2018.03.014.
  • [13] Tauseef-Ur-Rehman, Hafiz Ali, Muhammad Mansoor Janjua, Uzair Sajjid, Wei Mon Yan. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer 2019;135:649-673. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001.
  • [14] Siddharth Roy, Lazarus Godson Asirvatham, Deepak Kunhappan, Enoch Cephas, Somchai Wongwises. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. Journal of Thermal Engineering 2015;1:104-112. https://doi.org/10.18186/jte.29475.
  • [15] Lazarus Godson. Nanofluid heat transfer and applications. Journal of Thermal Engineering 2015;1:113-115. https://doi.org/10.18186/jte.93344.
  • [16] N. Tokgoz, E. Alıç, Ö. Kaşka, M. M. Aksoy. The numerical study of heat transfer enhancement using Al2O3-water nanofluid in corrugated duct application. Journal of Thermal Engineering 2018;4:1984-1997. https://doi.org/10.18186/journal-of-thermal-engineering.409655
  • [17] R. Ravisankar, V.S.K. Venkatachalapathy, N. Alagumurthi. Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid. Journal of Thermal Engineering 2018;4:2188-2200.
  • [18] Tauseef-ur- Rehman, Hafiz Muhammad Ali. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. International Communications in Heat and Mass Transfer 2018;98:155-162. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003
  • [19] Tabet Ismail, Mohamed Kezzar, Nouredine Nafire, Abdelkader Khanetout. A new analytical investigation of natural convection of non-newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). Journal of Thermal Engineering 2018;4:2496-2508. https://doi.org/10.18186/thermal.465731.
  • [20] Khadija Madani, Rejeb Ben Maad, Aissa Abidi-Saad. Numerical investigation of cooling a ribbed micro channel using nanofluid. Journal of Thermal Engineering 2018;4:2408-2422. https://doi.org/10.18186/thermal.465650.
  • [21] M. Almakki, H. Mondal, P. Sibanda. Entropy generation in MHD flow of viscoelastic nanofluids with homogeneous-heterogeneous reaction, partial slip and nonlinear thermal radiation. Journal of Thermal Engineering 2020;6:327-345.
  • [22] Hasan Mousa, Jamil Naser, Omar Houche. Using PCM as energy storage material in water tanks: Theoretical and experimental investigation. Journal of Energy Storage 2019;22:1-7. https://doi.org/10.1016/j.est.2019.01.018.
  • [23] Kantesh D.C. Design of solar still using phase changing material as a storage medium. International Journal of Scientific & Engineering Research 2012;3:1-5.
  • [24] Hemin Thakkar, Dr. Hitesh Panchal. Performance investigation on solar still with PCM and Nano-composites: Experimental investigation. IJRSI 2015;3:334-339.
  • [25] Miqdam T Chaichan, Hussein A Kazem. Using aluminium powder with PCM (Paraffin Wax) to enhance single slope solar water distiller productivity in Baghdad – Iraq winter weathers. International Journal of Renewable Energy Research 2015;5:251-257.
  • [26] Sagar Suresh Agrawal. Distillation of water- using solar energy with Phase Change Materials. IJERA 2015:133-138.
  • [27] G. Rajasekhara, M. Eswaramoorthy. Performance evaluation on solar still integrated with nano-composite phase change materials. Applied Solar Energy 2015;51:15-21. https://doi.org/10.3103/S0003701X15010119.
  • [28] H. S. Deshmukh, S. B. Thombre. Experimental study of an integrated single basin solar still with bees wax as a passive storage material. International Journal of Thermal Technologies 2015;5:226-231.
  • [29] Maheep Kumar, Ajeet Kumar Rai. Performance study of a phase change material assisted solar still. IJARET 2016;7: 60-67.
  • [30] Mouna Hamed, Ammar B. Brahim. Theoretical model of a flat plate solar collector integrated with phase change material. International Journal of Energy and Power Engineering 2015;9:1420-1427.
  • [31] P. Sundaram, R. Senthil. Productivity enhancement of solar distillation system using paraffin wax. Int. J. Chem. Sci. 2016;14:2339-2348.
  • [32] Bharat Kumar Patil, Sanjay Dambal. Design and experimental performance analysis of solar still using phase changing materials and sensible heat elements. IJRMET 2016;6:144-149.
  • [33] Mauli K. Dube, Akshay T. Dhalpe, Gaurav N. Devkate, Mayur D. Kadam. A study of performance of solar still with Stearic Acid as PCM. Journal for Research 2017;3:5-8.
  • [34] T Rehman, HM Ali, A Saieed, W Pao, M Ali. Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. International Journal of Heat and Mass Transfer 2018;127:381-393. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.120
  • [35] ZA Qureshi, HM Ali, S Khushnood. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. International Journal of Heat and Mass Transfer 2018;127:838-856. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.
  • [36] Mohammad Mumtaz A. Khan, Nasiru I. Ibrahim, I.M. Mahbubul, Hafiz Muhammad. Ali, R. Saidur, Fahad A. Al-Sulaiman. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 2018;166:334-350. https://doi.org/10.1016/j.solener.2018.03.014.
  • [37] A.E. Kabeel, Y. A. F. El-Samadony, Wael M. El-Maghlany. Theoretical performance comparison of solar still using different PCM. Twentieth International Water Technology Conference, IWTC20 Hurghada 2017: 424-432.
  • [38] M. Ravi Kumar, M. Sridhar, S. Madhan Kumar, C. Vignesh Vasanth. Experimental Investigation of Solar water Desalination with Phase Change Material and TiO2. Imperial Journal of Interdisciplinary Research 2017;3:1128-1134.
  • [39] Avesahemad S. N. Husainy, Omkar S. Karangale, Vinayak Y Shinde. Experimental study of double slope solar distillation with and without effect of latent thermal energy storage. Asian Review of Mechanical Engineering 2017;6:15-18.
  • [40] Piyush Pal, Pankaj Yadav, Rahul Dev, Dhananjay Singh. Performance analysis of modified basin type double slope multi–wick solar still. Desalination 2017;422:68–82. https://doi.org/10.1016/j.desal.2017.08.009.
  • [41] Hrushikesh Kulkarni, Chinmay Kute, Chirag Patel, Akshay Tavse. Experimental investigation and performance evaluation of solar still using PCM. IRJET 2018;5:1109-1118.
  • [42] A.E. Kabeel, Y.A.F. El-Samadony, Wael M. El-Maghlany. Comparative study on the solar still performance utilizing different PCM. Desalination 2018;432:89–96. https://doi.org/10.1016/j.desal.2018.01.016.
  • [43] Wen-Long Cheng, Yan-Kai Huo, Yong-Le Nian. Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination 2019;455:89–99. https://doi.org/10.1016/j.desal.2019.01.007.
  • [44] A.E. Kabeel, Mohamed Abdelgaied, M. Mahgoub. The performance of a modified solar still using hot air injection and PCM. Desalination 2016;379:102–107. http://dx.doi.org/10.1016/j.desal.2015.11.007.
  • [45] Meysam Faegh, Mohammad Behshad Shafii. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 2017;409:128–135. http://dx.doi.org/10.1016/j.desal.2017.01.023.
  • [46] Murat M. Kenisarin. Thermo-physical properties of some organic phase change materials for latent heat storage. A review. Solar Energy 2014;107:553-575. https://doi.org/10.1016/j.solener.2014.05.001.
  • [47] Fahad A. Al-Sulaiman et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews 2017;70:1072–1089. http://dx.doi.org/10.1016/j.rser.2016.12.012.
  • [48] A. Shruthi, R. Pavithra, M. Durga. Desalination of brackish water using solar still with phase change material. IJARIIE 2018;4:2528- 2532.
  • [49] Chandrakant Wani, Praveen Kumar Loharkar. A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage. Materials Today proceedings 2017;4:10264-10267. https://doi.org/10.1016/j.matpr.2017.06.361.
  • [50] S. Shanmugan, S. Palani, B. Janarthanan. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination 2018;433:186-198. https://doi.org/10.1016/j.desal.2017.11.045.
  • [51] Y. H. Siao, W .M .Yan, C. M. Lai. Transient characteristics of thermal energy storage in an enclosure packed with MPCM particles. Applied Thermal Engineering 2015;88:47-53. https://doi.org/10.1016/j.applthermaleng.2014.11.059
  • [52] A. Kasaeian, L. Bahrami, F. Pourfayaz, E. Khodabandeh, W.M. Yan. Experimental studies on the applications of PCMs and Nano-CPMs in building: a critical review. Energy and Buildings 2017;154:96-112. https://doi.org/10.1016/J.ENBUILD.2017.08.037.
  • [53] A. Arshad, H.M. Ali, S. Khushnood, M. Jabbal. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. International Journal of Heat and Mass Transfer 2018;117:861-872. https://doi.org/10.1016...asstransfer.2017.10.008.
  • [54] H.M. Ali, A. Arshad, M. Jabbal, P. Verdin. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison. International Journal of Heat and Mass Transfer 2018;117:1199-1204. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.065.
  • [55] HM Ali, A Arshad, MM Janjua, W Baig, U Sajjad. Thermal performance of LHSU for electronics under steady and transient operations modes. International Journal of Heat and Mass Transfer 2018;127:1223-1232. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.120.
  • [56] C. J. Ho, C.R. Siao, W. M. Yan. Thermal energy storage characteristics in enclosure packed with MEPCM particles: an experimental and numerical study. Int. journal of heat and Mass Transfer 2014;73:88-96. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.056.

MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL

Year 2021, Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,, 196 - 214, 01.02.2021
https://doi.org/10.18186/thermal.871439

Abstract

Solar still is best choice of utilizing freely available solar thermal energy to purify/desalinate muddy water. The driving force for this work is the inadequate availability of clean fresh water sources and the plenty of contaminated water available for probable conversion into potable water. Among various designs available, double basin passive solar still looks attractive for thermal applications in water prone and remote areas. This work presents experimental characterization of double slope solar still using phase change materials. This work aims to improve the performance (productivity of fresh water) using Mg2SO4.7H2O as phase change material (PCM). Different tests were conducted for varying mass of the PCM. For experimentation, two identical double slope solar stills (basin area of 0.5×0.5 m2) were designed, fabricated and tested for freshwater productivity. One is solar still (without PCM) and second with phase change material. A water depth of 5 cm was constant throughout the experimentation under climate conditions of Jabalpur (23° 10' N, 79° 59'E), Madhya Pradesh India. The results obtained indicate that daily distillate for solar still with Magnesium sulfate heptahydrate is higher as compared to solar still without PCM. The convective heat transfer coefficient increases during the discharging period of PCM The daily freshwater productivity of 1400, 1420 & 1400 ml/m2/day for solar still (without Mg2SO4.7H2O), while 1800, 1900 & 1960 ml/m2day for the solar still (with PCM) were recorded with addition of 0.5, 0.75 and 1kg of Mg2SO4.7H2O respectively. The overall thermal efficiency of the solar still with PCM was observed to be 64%, and for a solar still without the PCM, it was 47% while the other conditions kept constant.

References

  • [1] S. Howard. The UNESCO courier. 2019. https://en.unesco.org/news/billions-deprived-right-water.
  • [2] Omid Mahian, Ali Kianifar, Raviwat Srisomba, Phubate Thiangtham. Solar distillation practice for water desalination systems. Journal of Thermal Engineering 2015;1:287-288.
  • [3] Law Torres Sevilla, Jovana Radulovic. Mathematical modelling of low grade thermal energy storage using an encapsulated liquid medium. Journal of Thermal Engineering 2020;6:214-226. https://doi.org/10.18186/thermal.711327.
  • [4] Korti abdel illah nabil. Numerical simulation on the effect of latent heat thermal energy storage unit. Journal of Thermal Engineering 2016;2:598-606. https://doi.org/10.18186/jte.00934.
  • [5] Ihsan Ullah, Mohammad G. Rasul. Recent developments in solar thermal desalination technologies: A review. Energies 2019;12:119. https://doi:10.3390/en12010119.
  • [6] Edward Jones, Manzoor Qadir, Michelle T. H. van Vliet, Vladimir Smakhtin, Seongmu Kang. The state of desalination and brine production: A global outlook. Science of The Total Environment 2019;657:1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076.
  • [7] O.K. Buros. The ABCs of Desalting. International Desalination Association, USA, second edition 1990.
  • [8] Thomas M. Missimer, Robert G. Malivab. Environmental issues in seawater reverse osmosis desalination: Intakes and Outfalls. Desalination 2018;434:198-215. https://doi.org/10.1016/j.desal.2017.07.012.
  • [9] Mahmoud Shatat, Saffa B. Riffat. Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies 2014;9:1-19. https://doi.org/10.1093/ijlct/cts025.
  • [10] D. B. Singh, G. N. Tiwari. Enhancement in energy metrics of double slope solar still by incorporating N identical PVT collectors. Solar Energy 2017;143:142-161. https://doi.org/10.1016/j.solener.2016.12.039.
  • [11] Vishwanath Kumar Panangipalli, Anil Kumar, Om Prakash, Ajay Kaviti. Solar stills system design: A review. Renewable and Sustainable Energy Reviews 2015;51:153-181. https://doi.org/10.1016/j.rser.2015.04.103.
  • [12] M.M.A Khan, NI Ibrahim, IM Mahbubul, HM Ali, R Saidur, FA Al-Sulaiman. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 2018;166:334-350. https://doi.org/10.1016/j.solener.2018.03.014.
  • [13] Tauseef-Ur-Rehman, Hafiz Ali, Muhammad Mansoor Janjua, Uzair Sajjid, Wei Mon Yan. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer 2019;135:649-673. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001.
  • [14] Siddharth Roy, Lazarus Godson Asirvatham, Deepak Kunhappan, Enoch Cephas, Somchai Wongwises. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. Journal of Thermal Engineering 2015;1:104-112. https://doi.org/10.18186/jte.29475.
  • [15] Lazarus Godson. Nanofluid heat transfer and applications. Journal of Thermal Engineering 2015;1:113-115. https://doi.org/10.18186/jte.93344.
  • [16] N. Tokgoz, E. Alıç, Ö. Kaşka, M. M. Aksoy. The numerical study of heat transfer enhancement using Al2O3-water nanofluid in corrugated duct application. Journal of Thermal Engineering 2018;4:1984-1997. https://doi.org/10.18186/journal-of-thermal-engineering.409655
  • [17] R. Ravisankar, V.S.K. Venkatachalapathy, N. Alagumurthi. Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid. Journal of Thermal Engineering 2018;4:2188-2200.
  • [18] Tauseef-ur- Rehman, Hafiz Muhammad Ali. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. International Communications in Heat and Mass Transfer 2018;98:155-162. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003
  • [19] Tabet Ismail, Mohamed Kezzar, Nouredine Nafire, Abdelkader Khanetout. A new analytical investigation of natural convection of non-newtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM). Journal of Thermal Engineering 2018;4:2496-2508. https://doi.org/10.18186/thermal.465731.
  • [20] Khadija Madani, Rejeb Ben Maad, Aissa Abidi-Saad. Numerical investigation of cooling a ribbed micro channel using nanofluid. Journal of Thermal Engineering 2018;4:2408-2422. https://doi.org/10.18186/thermal.465650.
  • [21] M. Almakki, H. Mondal, P. Sibanda. Entropy generation in MHD flow of viscoelastic nanofluids with homogeneous-heterogeneous reaction, partial slip and nonlinear thermal radiation. Journal of Thermal Engineering 2020;6:327-345.
  • [22] Hasan Mousa, Jamil Naser, Omar Houche. Using PCM as energy storage material in water tanks: Theoretical and experimental investigation. Journal of Energy Storage 2019;22:1-7. https://doi.org/10.1016/j.est.2019.01.018.
  • [23] Kantesh D.C. Design of solar still using phase changing material as a storage medium. International Journal of Scientific & Engineering Research 2012;3:1-5.
  • [24] Hemin Thakkar, Dr. Hitesh Panchal. Performance investigation on solar still with PCM and Nano-composites: Experimental investigation. IJRSI 2015;3:334-339.
  • [25] Miqdam T Chaichan, Hussein A Kazem. Using aluminium powder with PCM (Paraffin Wax) to enhance single slope solar water distiller productivity in Baghdad – Iraq winter weathers. International Journal of Renewable Energy Research 2015;5:251-257.
  • [26] Sagar Suresh Agrawal. Distillation of water- using solar energy with Phase Change Materials. IJERA 2015:133-138.
  • [27] G. Rajasekhara, M. Eswaramoorthy. Performance evaluation on solar still integrated with nano-composite phase change materials. Applied Solar Energy 2015;51:15-21. https://doi.org/10.3103/S0003701X15010119.
  • [28] H. S. Deshmukh, S. B. Thombre. Experimental study of an integrated single basin solar still with bees wax as a passive storage material. International Journal of Thermal Technologies 2015;5:226-231.
  • [29] Maheep Kumar, Ajeet Kumar Rai. Performance study of a phase change material assisted solar still. IJARET 2016;7: 60-67.
  • [30] Mouna Hamed, Ammar B. Brahim. Theoretical model of a flat plate solar collector integrated with phase change material. International Journal of Energy and Power Engineering 2015;9:1420-1427.
  • [31] P. Sundaram, R. Senthil. Productivity enhancement of solar distillation system using paraffin wax. Int. J. Chem. Sci. 2016;14:2339-2348.
  • [32] Bharat Kumar Patil, Sanjay Dambal. Design and experimental performance analysis of solar still using phase changing materials and sensible heat elements. IJRMET 2016;6:144-149.
  • [33] Mauli K. Dube, Akshay T. Dhalpe, Gaurav N. Devkate, Mayur D. Kadam. A study of performance of solar still with Stearic Acid as PCM. Journal for Research 2017;3:5-8.
  • [34] T Rehman, HM Ali, A Saieed, W Pao, M Ali. Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. International Journal of Heat and Mass Transfer 2018;127:381-393. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.120
  • [35] ZA Qureshi, HM Ali, S Khushnood. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. International Journal of Heat and Mass Transfer 2018;127:838-856. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.
  • [36] Mohammad Mumtaz A. Khan, Nasiru I. Ibrahim, I.M. Mahbubul, Hafiz Muhammad. Ali, R. Saidur, Fahad A. Al-Sulaiman. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 2018;166:334-350. https://doi.org/10.1016/j.solener.2018.03.014.
  • [37] A.E. Kabeel, Y. A. F. El-Samadony, Wael M. El-Maghlany. Theoretical performance comparison of solar still using different PCM. Twentieth International Water Technology Conference, IWTC20 Hurghada 2017: 424-432.
  • [38] M. Ravi Kumar, M. Sridhar, S. Madhan Kumar, C. Vignesh Vasanth. Experimental Investigation of Solar water Desalination with Phase Change Material and TiO2. Imperial Journal of Interdisciplinary Research 2017;3:1128-1134.
  • [39] Avesahemad S. N. Husainy, Omkar S. Karangale, Vinayak Y Shinde. Experimental study of double slope solar distillation with and without effect of latent thermal energy storage. Asian Review of Mechanical Engineering 2017;6:15-18.
  • [40] Piyush Pal, Pankaj Yadav, Rahul Dev, Dhananjay Singh. Performance analysis of modified basin type double slope multi–wick solar still. Desalination 2017;422:68–82. https://doi.org/10.1016/j.desal.2017.08.009.
  • [41] Hrushikesh Kulkarni, Chinmay Kute, Chirag Patel, Akshay Tavse. Experimental investigation and performance evaluation of solar still using PCM. IRJET 2018;5:1109-1118.
  • [42] A.E. Kabeel, Y.A.F. El-Samadony, Wael M. El-Maghlany. Comparative study on the solar still performance utilizing different PCM. Desalination 2018;432:89–96. https://doi.org/10.1016/j.desal.2018.01.016.
  • [43] Wen-Long Cheng, Yan-Kai Huo, Yong-Le Nian. Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation. Desalination 2019;455:89–99. https://doi.org/10.1016/j.desal.2019.01.007.
  • [44] A.E. Kabeel, Mohamed Abdelgaied, M. Mahgoub. The performance of a modified solar still using hot air injection and PCM. Desalination 2016;379:102–107. http://dx.doi.org/10.1016/j.desal.2015.11.007.
  • [45] Meysam Faegh, Mohammad Behshad Shafii. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 2017;409:128–135. http://dx.doi.org/10.1016/j.desal.2017.01.023.
  • [46] Murat M. Kenisarin. Thermo-physical properties of some organic phase change materials for latent heat storage. A review. Solar Energy 2014;107:553-575. https://doi.org/10.1016/j.solener.2014.05.001.
  • [47] Fahad A. Al-Sulaiman et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews 2017;70:1072–1089. http://dx.doi.org/10.1016/j.rser.2016.12.012.
  • [48] A. Shruthi, R. Pavithra, M. Durga. Desalination of brackish water using solar still with phase change material. IJARIIE 2018;4:2528- 2532.
  • [49] Chandrakant Wani, Praveen Kumar Loharkar. A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage. Materials Today proceedings 2017;4:10264-10267. https://doi.org/10.1016/j.matpr.2017.06.361.
  • [50] S. Shanmugan, S. Palani, B. Janarthanan. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination 2018;433:186-198. https://doi.org/10.1016/j.desal.2017.11.045.
  • [51] Y. H. Siao, W .M .Yan, C. M. Lai. Transient characteristics of thermal energy storage in an enclosure packed with MPCM particles. Applied Thermal Engineering 2015;88:47-53. https://doi.org/10.1016/j.applthermaleng.2014.11.059
  • [52] A. Kasaeian, L. Bahrami, F. Pourfayaz, E. Khodabandeh, W.M. Yan. Experimental studies on the applications of PCMs and Nano-CPMs in building: a critical review. Energy and Buildings 2017;154:96-112. https://doi.org/10.1016/J.ENBUILD.2017.08.037.
  • [53] A. Arshad, H.M. Ali, S. Khushnood, M. Jabbal. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. International Journal of Heat and Mass Transfer 2018;117:861-872. https://doi.org/10.1016...asstransfer.2017.10.008.
  • [54] H.M. Ali, A. Arshad, M. Jabbal, P. Verdin. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison. International Journal of Heat and Mass Transfer 2018;117:1199-1204. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.065.
  • [55] HM Ali, A Arshad, MM Janjua, W Baig, U Sajjad. Thermal performance of LHSU for electronics under steady and transient operations modes. International Journal of Heat and Mass Transfer 2018;127:1223-1232. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.120.
  • [56] C. J. Ho, C.R. Siao, W. M. Yan. Thermal energy storage characteristics in enclosure packed with MEPCM particles: an experimental and numerical study. Int. journal of heat and Mass Transfer 2014;73:88-96. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.056.
There are 56 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mohan Khandagre This is me 0000-0003-3712-0287

Bhupendra Gupta This is me 0000-0001-9559-9578

Jyotı Bhalavı This is me 0000-0002-3025-9641

Prashant Baredar This is me 0000-0002-8690-0741

Publication Date February 1, 2021
Submission Date April 20, 2019
Published in Issue Year 2021 Volume: 7 Issue: 2 - Special Issue 13: 2nd International Conference (ICRESE -2020), India,

Cite

APA Khandagre, M., Gupta, B., Bhalavı, J., Baredar, P. (2021). MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL. Journal of Thermal Engineering, 7(2), 196-214. https://doi.org/10.18186/thermal.871439
AMA Khandagre M, Gupta B, Bhalavı J, Baredar P. MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL. Journal of Thermal Engineering. February 2021;7(2):196-214. doi:10.18186/thermal.871439
Chicago Khandagre, Mohan, Bhupendra Gupta, Jyotı Bhalavı, and Prashant Baredar. “MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL”. Journal of Thermal Engineering 7, no. 2 (February 2021): 196-214. https://doi.org/10.18186/thermal.871439.
EndNote Khandagre M, Gupta B, Bhalavı J, Baredar P (February 1, 2021) MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL. Journal of Thermal Engineering 7 2 196–214.
IEEE M. Khandagre, B. Gupta, J. Bhalavı, and P. Baredar, “MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 196–214, 2021, doi: 10.18186/thermal.871439.
ISNAD Khandagre, Mohan et al. “MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL”. Journal of Thermal Engineering 7/2 (February 2021), 196-214. https://doi.org/10.18186/thermal.871439.
JAMA Khandagre M, Gupta B, Bhalavı J, Baredar P. MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL. Journal of Thermal Engineering. 2021;7:196–214.
MLA Khandagre, Mohan et al. “MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 196-14, doi:10.18186/thermal.871439.
Vancouver Khandagre M, Gupta B, Bhalavı J, Baredar P. MAGNESIUM SULFATE HEPTAHYDRATE AS PHASE CHANGE MATERIAL IN DOUBLE SLOPE SOLAR STILL. Journal of Thermal Engineering. 2021;7(2):196-214.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering