Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 4, 715 - 730, 01.05.2021
https://doi.org/10.18186/thermal.910320

Abstract

References

  • 1] Forson FK, Nazha M A, Rajakaruna H. Experimental and simulation studies on a single pass, double duct solar air heater. Energy conversion and Management 2003; 44(8): 1209-1227. doi: 10.1016/S0196-8904(02)00139-5.
  • [2] Aharwal K, Gandhi B, Saini J, Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable energy 2008; 33(4): 585-596. doi: 10.1016/j.renene.2007.03.023.
  • [3] Saxena A, El-Sebaii A, A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews 2015; 43: 863-890. doi: 10.1016/j.rser.2014.11.059.
  • [4] Singh S, Dhiman P. Exergoeconomic analysis of recyclic packed bed solar air heater-sustained air heating system for buildings. Journal of Energy Storage 2016; 5(3): 33-47. doi: 10.1016/j.est.2015.11.008.
  • [5] Choudhury C, Chauhan P, Garg H, Garg S. Cost—benefit ratio of triple pass solar air heaters. Energy conversion and management 1996; 37(1): 95-116. doi: 10.1016/0196-8904(95)00017-8.
  • [6] Garg H, Adhikari R. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation. Renewable Energy1997; 11(3): 363-385. doi: 10.1016/S0960-1481(97)00007-4.
  • [7] Gawande V B, Dhoble A, Zodpe D, Chamoli S. Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering 2016; 8: 19-31. doi: 10.1016/j.csite.2016.03.003.
  • [8] Jin D, Zhang M, Wang P, Xu S. Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate. Energy 2015; 89: 178-190. doi: 10.1016/j.energy.2015.07.069.
  • [9] Amori KE, Abd-AlRaheem MA. Field study of various air based photovoltaic/thermal hybrid solar collectors. Renewable Energy 2014; 63: 402-414. doi: 10.1016/j.renene.2013.09.047.
  • [10] Jani D, Mishra M, Sahoo P. Performance prediction of solid desiccant–Vapor compression hybrid air-conditioning system using artificial neural network. Energy 2016;103: 618-629. doi: 10.1016/j.energy.2016.03.014.
  • [11] Siddiqui F R, Elminshawy N A, Addas M F. Design and performance improvement of a solar desalination system by using solar air heater: Experimental and theoretical approach. Desalination 2016; 399: 78-87. doi: 10.1016/j.desal.2016.08.015.
  • [12] Rajaseenivasan T, Prasanth S R, Antony M S, Srithar K. Experimental investigation on the performance of an impinging jet solar air heater. Alexandria Engineering Journal 2017; 56, (1): 3-69. doi: 10.1016/j.aej.2016.09.004.
  • [13] Michael J J, Selvarasan I, Goic R. Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications. Renewable Energy 2016; 90: 95-104. doi: 10.1016/j.renene.2015.12.064.
  • [14] Manzolini G, Colombo L P, Romare S, Fustinoni D. Tiles as solar air heater to support a heat pump for residential air conditioning. Applied Thermal Engineering 2016; 102: 1412-1421. doi: 10.1016/j.applthermaleng.2016.03.009.
  • [15] Wadhawan A, Dhoble A, Gawande V. Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Engineering Journal 2018; 57(3): 1173-1183. doi: 10.1016/j.aej.2017.03.016.
  • [16] Fan W, Kokogiannakis G, Ma Z, Cooper P. Development of a dynamic model for a hybrid photovoltaic thermal collector–Solar air heater with fins. Renewable Energy 2017; 101: 816-834. doi: 10.1016/j.renene.2016.09.039.
  • [17] Hakim II, Putra N, Gunawan Y. Experimental study for heat pipe applications on low enthalpy geothermal energy utilization for agricultural products dryers. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2019; 56(1): 68-77.
  • [18] Heydari A, Mesgarpour M. Experimental analysis and numerical modeling of solar air heater with helical flow path. Solar Energy 2018;162: 278–288. doi: 10.1016/j.solener.2018.01.030.
  • [19] Raj AK, Srinivas M, Jayaraj S, A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering 2019;146: 910-920. doi: 10.1016/j.applthermaleng.2018.10.055.
  • [20] Sreekumar A. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Conversion and Management 2010; 51(11): 2230-2238. doi: 10.1016/j.enconman.2010.03.017.
  • [21] Yıldırım C, Tümen Özdil N F. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering 2018; 4(1): 1702-1712. doi: 10.18186/ JTE. 365713.
  • [22] Singh J, Singh R, Bhushan B. Thermo-Hydraulic Performance of Solar Air Heater Duct having Triangular Protrusions as Roughness Geometry. Journal of Thermal Engineering, Special Issue 2: Energy Systems and Developments 2015; 1(7): 607-620. doi: 10.18186/JTE. 01332.
  • [23] El-Sebaii A, Al-Snani H. Effect of selective coating on thermal performance of flat plate solar air heaters. Energy 2010; 35(4): 1820-1828. doi: 10.1016/j.energy.2009.12.037.
  • [24] Kurtbas I, Durmus̨ A. Efficiency and exergy analysis of a new solar air heater. Renewable Energy 2004; 29(9): 1489-1501. doi: 10.1016/j.renene.2004.01.006.
  • [25] Sahu MK, Prasad RK. Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renewable Energy 2016; 96: 233-243. doi: 10.1016/j.renene.2016.04.083.
  • [26] Aboul-Enein S, El-Sebaii A, Ramadan M, El-Gohary H. Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renewable Energy 2000; 21( 3): 505-522. doi: 10.1016/S0960-1481(00)00092-6.
  • [27] Cengel YA, Boles MA. Thermodynamics An Engineering Approach. United States, McGraw-Hill Education, 8th edition, ISBN13 9780073398174.

THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING

Year 2021, Volume: 7 Issue: 4, 715 - 730, 01.05.2021
https://doi.org/10.18186/thermal.910320

Abstract

Hybrid air heater is a device taking advantage of two or more energy sources directly or indirectly for heating air. This study aims to analyze energy and exergy for a hybrid air heater. It is assumed that no thermal gradient exists along glass thickness and one-directional variation of temperature is in flow direction and thermal capacity of glass, absorber plate, and thermal insulations are negligible. To avoid food oxidation in dryers, effects of heating fluid such as air, carbon dioxide, and nitrogen on temperature, heat transfer, and thermodynamic first and second law efficiencies are also investigated along with the effects of hybrid heating on the aforementioned parameters. The problem is solved using MATLAB software and invoking iterative method with convergence criterion of 0.0001 for temperature. Results indicate the positive effects of using carbon dioxide. Applying hybrid system is also shown to increase the efficiency of air heater.

References

  • 1] Forson FK, Nazha M A, Rajakaruna H. Experimental and simulation studies on a single pass, double duct solar air heater. Energy conversion and Management 2003; 44(8): 1209-1227. doi: 10.1016/S0196-8904(02)00139-5.
  • [2] Aharwal K, Gandhi B, Saini J, Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable energy 2008; 33(4): 585-596. doi: 10.1016/j.renene.2007.03.023.
  • [3] Saxena A, El-Sebaii A, A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews 2015; 43: 863-890. doi: 10.1016/j.rser.2014.11.059.
  • [4] Singh S, Dhiman P. Exergoeconomic analysis of recyclic packed bed solar air heater-sustained air heating system for buildings. Journal of Energy Storage 2016; 5(3): 33-47. doi: 10.1016/j.est.2015.11.008.
  • [5] Choudhury C, Chauhan P, Garg H, Garg S. Cost—benefit ratio of triple pass solar air heaters. Energy conversion and management 1996; 37(1): 95-116. doi: 10.1016/0196-8904(95)00017-8.
  • [6] Garg H, Adhikari R. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation. Renewable Energy1997; 11(3): 363-385. doi: 10.1016/S0960-1481(97)00007-4.
  • [7] Gawande V B, Dhoble A, Zodpe D, Chamoli S. Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering 2016; 8: 19-31. doi: 10.1016/j.csite.2016.03.003.
  • [8] Jin D, Zhang M, Wang P, Xu S. Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate. Energy 2015; 89: 178-190. doi: 10.1016/j.energy.2015.07.069.
  • [9] Amori KE, Abd-AlRaheem MA. Field study of various air based photovoltaic/thermal hybrid solar collectors. Renewable Energy 2014; 63: 402-414. doi: 10.1016/j.renene.2013.09.047.
  • [10] Jani D, Mishra M, Sahoo P. Performance prediction of solid desiccant–Vapor compression hybrid air-conditioning system using artificial neural network. Energy 2016;103: 618-629. doi: 10.1016/j.energy.2016.03.014.
  • [11] Siddiqui F R, Elminshawy N A, Addas M F. Design and performance improvement of a solar desalination system by using solar air heater: Experimental and theoretical approach. Desalination 2016; 399: 78-87. doi: 10.1016/j.desal.2016.08.015.
  • [12] Rajaseenivasan T, Prasanth S R, Antony M S, Srithar K. Experimental investigation on the performance of an impinging jet solar air heater. Alexandria Engineering Journal 2017; 56, (1): 3-69. doi: 10.1016/j.aej.2016.09.004.
  • [13] Michael J J, Selvarasan I, Goic R. Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications. Renewable Energy 2016; 90: 95-104. doi: 10.1016/j.renene.2015.12.064.
  • [14] Manzolini G, Colombo L P, Romare S, Fustinoni D. Tiles as solar air heater to support a heat pump for residential air conditioning. Applied Thermal Engineering 2016; 102: 1412-1421. doi: 10.1016/j.applthermaleng.2016.03.009.
  • [15] Wadhawan A, Dhoble A, Gawande V. Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Engineering Journal 2018; 57(3): 1173-1183. doi: 10.1016/j.aej.2017.03.016.
  • [16] Fan W, Kokogiannakis G, Ma Z, Cooper P. Development of a dynamic model for a hybrid photovoltaic thermal collector–Solar air heater with fins. Renewable Energy 2017; 101: 816-834. doi: 10.1016/j.renene.2016.09.039.
  • [17] Hakim II, Putra N, Gunawan Y. Experimental study for heat pipe applications on low enthalpy geothermal energy utilization for agricultural products dryers. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2019; 56(1): 68-77.
  • [18] Heydari A, Mesgarpour M. Experimental analysis and numerical modeling of solar air heater with helical flow path. Solar Energy 2018;162: 278–288. doi: 10.1016/j.solener.2018.01.030.
  • [19] Raj AK, Srinivas M, Jayaraj S, A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering 2019;146: 910-920. doi: 10.1016/j.applthermaleng.2018.10.055.
  • [20] Sreekumar A. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Conversion and Management 2010; 51(11): 2230-2238. doi: 10.1016/j.enconman.2010.03.017.
  • [21] Yıldırım C, Tümen Özdil N F. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering 2018; 4(1): 1702-1712. doi: 10.18186/ JTE. 365713.
  • [22] Singh J, Singh R, Bhushan B. Thermo-Hydraulic Performance of Solar Air Heater Duct having Triangular Protrusions as Roughness Geometry. Journal of Thermal Engineering, Special Issue 2: Energy Systems and Developments 2015; 1(7): 607-620. doi: 10.18186/JTE. 01332.
  • [23] El-Sebaii A, Al-Snani H. Effect of selective coating on thermal performance of flat plate solar air heaters. Energy 2010; 35(4): 1820-1828. doi: 10.1016/j.energy.2009.12.037.
  • [24] Kurtbas I, Durmus̨ A. Efficiency and exergy analysis of a new solar air heater. Renewable Energy 2004; 29(9): 1489-1501. doi: 10.1016/j.renene.2004.01.006.
  • [25] Sahu MK, Prasad RK. Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renewable Energy 2016; 96: 233-243. doi: 10.1016/j.renene.2016.04.083.
  • [26] Aboul-Enein S, El-Sebaii A, Ramadan M, El-Gohary H. Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renewable Energy 2000; 21( 3): 505-522. doi: 10.1016/S0960-1481(00)00092-6.
  • [27] Cengel YA, Boles MA. Thermodynamics An Engineering Approach. United States, McGraw-Hill Education, 8th edition, ISBN13 9780073398174.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Heydari This is me 0000-0002-4563-2648

Mikaeil Forati This is me 0000-0001-9766-7829

Seyyed Khatam This is me 0000-0002-5377-5235

Publication Date May 1, 2021
Submission Date May 28, 2019
Published in Issue Year 2021 Volume: 7 Issue: 4

Cite

APA Heydari, A., Forati, M., & Khatam, S. (2021). THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING. Journal of Thermal Engineering, 7(4), 715-730. https://doi.org/10.18186/thermal.910320
AMA Heydari A, Forati M, Khatam S. THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING. Journal of Thermal Engineering. May 2021;7(4):715-730. doi:10.18186/thermal.910320
Chicago Heydari, Ali, Mikaeil Forati, and Seyyed Khatam. “THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING”. Journal of Thermal Engineering 7, no. 4 (May 2021): 715-30. https://doi.org/10.18186/thermal.910320.
EndNote Heydari A, Forati M, Khatam S (May 1, 2021) THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING. Journal of Thermal Engineering 7 4 715–730.
IEEE A. Heydari, M. Forati, and S. Khatam, “THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING”, Journal of Thermal Engineering, vol. 7, no. 4, pp. 715–730, 2021, doi: 10.18186/thermal.910320.
ISNAD Heydari, Ali et al. “THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING”. Journal of Thermal Engineering 7/4 (May 2021), 715-730. https://doi.org/10.18186/thermal.910320.
JAMA Heydari A, Forati M, Khatam S. THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING. Journal of Thermal Engineering. 2021;7:715–730.
MLA Heydari, Ali et al. “THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING”. Journal of Thermal Engineering, vol. 7, no. 4, 2021, pp. 715-30, doi:10.18186/thermal.910320.
Vancouver Heydari A, Forati M, Khatam S. THERMAL PERFORMANCE INVESTIGATION OF A HYBRID SOLAR AIR HEATER APPLIED IN A SOLAR DRYER USING THERMODYNAMIC MODELING. Journal of Thermal Engineering. 2021;7(4):715-30.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering