Research Article
BibTex RIS Cite

A study on heat and mass transfer analysis of solar distillation system

Year 2021, Volume: 7 Issue: 5, 1184 - 1205, 01.07.2021
https://doi.org/10.18186/thermal.978021

Abstract

The solar stills were developed to fulfil the freshwater need of the growing population. The paper presents the recent modifications made in still to improve their productivity like the application of phase change materials (PCM), connecting flat-plate collector (FPC), use of nanoparticles, stepped solar still, and attaching separate condenser in the still. Active solar stills are found more productive than passive ones and the thermal efficiency of active solar stills lie in the range of 50–70%, which is far better than passive still having 20–55% thermal efficiency. According to the literature studied in the paper, the maximum productivity of active solar still is 10 litres per day and in passive solar stills, it is 6 litres per day. The different approaches used to carry out the heat and mass transfer analysis of single and double slope active and passive solar stills are also discussed in the paper.

References

  • [1] Gude VG, Nirmalakhandan N, Deng S. Desalination using solar energy: Towards sustainability. Energy 2011;36:78–85. https://doi.org/10.1016/j.energy.2010.11.008.
  • [2] Deng R, Xie L, Lin H, Liu J, Han W. Integration of thermal energy and seawater desalination. Energy 2010;35:4368–74. https://doi.org/10.1016/j.energy.2009.05.025.
  • [3] Mahian O, Ali K, Raviwat S, Phubate T, Chaiwat J, Wongwises S. Solar distillation practice for water desalination systems. Journal of Thermal Engineering 2015;1:287–8. https://doi.org/10.18186/jte.93924.
  • [4] Thakur VK, Gaur MK, Sagar MK. Role of advance solar desalination technique for sustainable development. In: Pandit M, Srivastava L, Rao RV, Bansal JC, editors. Intelligent Computing Applications for Sustainable Real-World Systems, Gwalior, India: Springer Nature Switzerland AG, ICSISCET 2019, PALO 13; 2020, p. 28–38. https://doi.org/10.1007/978-3-030-44758-8_4.
  • [5] Hedayati-mehdiabadi E, Sarhaddi F, Sobhnamayan F. Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2019.07.160.
  • [6] Kalita P, Borah S, Das D. Design and performance evaluation of a novel solar distillation unit. Desalination 2017;416:65–75. https://doi.org/10.1016/j.desal.2017.04.025.
  • [7] Velmurugan V., Senthil Kumaran S., Niranajn Prabhu V. and SK. Productivity enhancement of stepped solar still : Performance analysis. Thermal Science 2008;12:153–63. https://doi.org/10.2298/TSCI0803153V.
  • [8] Muftah AF, Sopian K, Alghoul MA. Performance of basin type stepped solar still enhanced with superior design concepts. Desalination 2017:0–1. https://doi.org/10.1016/j.desal.2017.07.017.
  • [9] Bilal A, Jamil B, Haque NU, Ansari A. Groundwater for Sustainable Development Investigating the effect of pumice stones sensible heat storage on the performance of a solar still. Groundwater for Sustainable Development 2019;9:100228. https://doi.org/10.1016/j.gsd.2019.100228.
  • [10] Pounraj P, Winston DP, Kabeel A., Kumar BP, Manokar, A. Muthu Sathyamurthy R, Cynthia CS. Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance. Energy Conversion and Management 2018;168:371–81. https://doi.org/10.1016/j.enconman.2018.05.011.
  • [11] Shalaby SM, El-Bialy E, El-Sebaii AA. An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination 2016;398:247–55. https://doi.org/10.1016/j.desal.2016.07.042.
  • [12] Rajvanshi AK. Effect of various dyes on solar distillation. Solar Energy 1981;27:51–65. https://doi.org/10.1016/0038-092X(81)90020-7.
  • [13] Okeke CE, Egarievwe SU, Animalu AOE. Effects of coal and charcoal on solar-still performance. Energy 1990;15:1071–3. https://doi.org/10.1016/0360- 5442(90)90035-Z.
  • [14] Alaian WM, Elnegiry EA, Hamed AM. Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination 2016;379:10–5. https://doi.org/10.1016/j.desal.2015.10.010.
  • [15] Murugavel KK, Sivakumar S, Riaz Ahamed J, Chockalingam KKSK, Srithar K. Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy 2010;87:514–23. https://doi.org/10.1016/j.apenergy.2009.07.023.
  • [16] K. MK, Srithar K. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 2011;36:612–20. https://doi.org/10.1016/j.renene.2010.08.009.
  • [17] Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Applied Thermal Engineering 2017;113:684–93. https://doi.org/10.1016/j.applthermaleng.2016.11.085.
  • [18] Tiris C, Tiris M, Erdalli Y, Sohmen M. 98/03107 Experimental studies on a solar still coupled with a flat-plate collector and a single basin still. Fuel and Energy Abstracts 2003;39:287. https://doi.org/10.1016/s0140-6701(98)96632-2.
  • [19] El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Salem N. Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Conversion and Management 2008;49:2839–48. https://doi.org/10.1016/j.enconman.2008.03.002.
  • [20] Tanaka H, Nakatake Y. Effect of inclination of external flat plate reflector of basin type still in winter. Solar Energy 2007;81:1035–42. https://doi.org/10.1016/j.solener.2006.11.006.
  • [21] Deniz E. An Investigation of Some of the Parameters Involved in Inclined Solar Distillation Systems. Environmental Progress 2011;30:1–5. https://doi.org/10.1002/ep.11612.
  • [22] Tiwari GN, Sahota L. Review on the energy and economic efficiencies of passive and active solar distillation systems. Desalination 2017;401:151–79. https://doi.org/10.1016/j.desal.2016.08.023.
  • [23] Arunkumar T, Raj K, Rufuss DDW, Denkenberger D, Tingting G, Xuan L, et al. A review of efficient high productivity solar stills. Renewable and Sustainable Energy Reviews 2019;101:197–220. https://doi.org/10.1016/j.rser.2018.11.013.
  • [24] Bait O, Ameur MS. Enhanced heat and mass transfer in solar stills using nano fl uids : A review. Solar Energy 2018;170:694–722. https://doi.org/10.1016/j.solener.2018.06.020.
  • [25] Kumar A, Singh DB, Mallick A, Kumar S, Kumar N, Dwivedi VK. Performance analysis of specially designed single basin passive solar distillers incorporated with novel solar desalting stills : A review. Solar Energy 2019;185:146–64. https://doi.org/10.1016/j.solener.2019.04.040.
  • [26] Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage : A review. Innovative Food Science and Emerging Technologies 2017;41:34–46. https://doi.org/10.1016/j.ifset.2017.01.004.
  • [27] Grewal R, Manchanda H, Kumar M. A review on applications of phase change materials in solar distillation. 2nd International Conference on Emerging Trends in Science, Engineering & Technology, Pune (India): Mahratta Chamber of Commerce, Industries and Agriculture, Pune (India); 2018, p. 722–35.
  • [28] Kabeel AE, Arunkumar T, Denkenberger DC, Sathyamurthy R. Performance enhancement of solar still through efficient heat exchange mechanism – A review. Applied Thermal Engineering 2017;114:815–36. https://doi.org/10.1016/j.applthermaleng.2016.12.044.
  • [29] Das D, Bordoloi U, Kalita P, Boehm RF, Dilip A. Groundwater for Sustainable Development Solar still distillate enhancement techniques and recent developments. Groundwater for Sustainable Development 2020;10:100360. https://doi.org/10.1016/j.gsd.2020.100360.
  • [30] Pansal K, Ramani B, Sadasivuni K, Panchal H, Manokar M, Sathyamurthy R, et al. Use of solar photovoltaic with active solar still to improve distillate output: A review. Groundwater for Sustainable Development 2020:100341. https://doi.org/10.1016/j.gsd.2020.100341.
  • [31] Agrawal A, Rana RS. Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon 2019:e01525. https://doi.org/10.1016/j.heliyon.2019.e01525.
  • [32] Ayuthaya RPN, Namprakai P, Ampun W. The thermal performance of an ethanol solar still with fin plate to increase productivity. Renewable Energy 2013;54:227–34. https://doi.org/10.1016/j.renene.2012.08.004.
  • [33] Thakur VK, Gaur MK. A study on passive solar still with nanoparticles 2020;2:26–38. https://doi.org/https://doi.org/10.32438/IJET.203009.
  • [34] Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 2016;130:260–72. https://doi.org/10.1016/j.solener.2016.02.018.
  • [35] Gupta B, Shankar P, Sharma R, Baredar P. Performance Enhancement using Nano Particles in Modified Passive Solar Still. Procedia Technology 2016;25:1209–16. https://doi.org/10.1016/j.protcy.2016.08.208.
  • [36] Kabeel AE, Omara ZM, Essa FA, Abdullah AS, Arunkumar T. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alexandria Engineering Journal 2017. https://doi.org/10.1016/j.aej.2017.08.014.
  • [37] Nijmeh S, Odeh S, Akash B. Experimental and theoretical study of a single-basin solar sill in Jordan. International Communications in Heat and Mass Transfer 2005;32:565–72. https://doi.org/10.1016/j.icheatmasstransfer.2004.06.006.
  • [38] Gupta B, Kumar A, Baredar P V. Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Frontiers in Materials 2017;4:1–7. https://doi.org/10.3389/fmats.2017.00023.
  • [39] El-Sebaii AA, Aboul-Enein S, Ramadan MRI, E El-Bialy. Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber. Energy 2000;25:35–49. https://doi.org/10.1016/S0360-5442(99)00037-7.
  • [40] Sharshir SW, Peng G, Elsheikh AH, Edreis EMA. Energy and exergy analysis of solar stills with micro / nano particles : A comparative study. Energy Conversion and Management 2018;177:363–75. https://doi.org/10.1016/j.enconman.2018.09.074.
  • [41] Shanmugan S, Palani S, Janarthanan B. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination 2017:0–1. https://doi.org/10.1016/j.desal.2017.11.045.
  • [42] Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nano fluids. DES 2015;360:45–51. https://doi.org/10.1016/j.desal.2015.01.004.
  • [43] Gnanadason MK, Kumar PS, Rajakumar S, Yousuf MHS. Effect of nanofluids in a vacuum single basin solar still. International Journal of Advanced Engineering Research and Studies 2011;I:171–7.
  • [44] Arunkumar T, Jayaprakash, R. Denkenberger D, Ahsan A, Okundamiya MS, Kumar S, Hiroshi T, et al. An experimental study on a hemispherical solar still. Desalination 2012;286:342–8. https://doi.org/10.1016/j.desal.2011.11.047.
  • [45] Dev R, Abdul-Wahab SA, Tiwari GN. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Applied Energy 2011;88:252–64. https://doi.org/10.1016/j.apenergy.2010.08.001.
  • [46] Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Enhancement of solar still productivity using floating perforated black plate. Energy Conversion and Management 2002;43:937–46. https://doi.org/10.1016/S0196-8904(01)00079-6.
  • [47] Phadatare MK, Verma SK. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination 2007;217:267–75. https://doi.org/10.1016/j.desal.2007.03.006.
  • [48] Sarhaddi F, Farshchi F, Aghaei H, Amir S, Seyed H. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Conversion and Management 2017;133:97–109. https://doi.org/10.1016/j.enconman.2016.11.044.
  • [49] Omara ZM, Kabeel AE, Younes MM. Enhancing the stepped solar still performance using internal and external reflectors. Energy Conversion and Management 2014;78:876–81. https://doi.org/10.1016/j.enconman.2013.07.092.
  • [50] Faegh M, Behshad M. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes 2017;409:128–35. https://doi.org/10.1016/j.desal.2017.01.023.
  • [51] Abu-arabi M, Al-harahsheh M, Ahmad M, Mousa H. Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector. Journal of Energy Storage 2020;29:101372. https://doi.org/10.1016/j.est.2020.101372.
  • [52] Mazraeh AE, Babayan M, Yari M, Se AM, Saha SC. Theoretical study on the performance of a solar still system integrated with PCM-PV module for sustainable water and power generation 2018;443:184–97. https://doi.org/10.1016/j.desal.2018.05.024.
  • [53] Al-harahsheh M, Abu-arabi M, Mousa H, Alzghoul Z. Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering 2018;128:1030–40. https://doi.org/10.1016/j.applthermaleng.2017.09.073.
  • [54] Cheng W, Huo Y, Nian Y. Performance of solar still using shape-stabilized PCM : Experimental and theoretical investigation. Desalination 2019;455:89–99. https://doi.org/10.1016/j.desal.2019.01.007.
  • [55] Vigneswaran VS, Kumaresan G, Dinakar B V., Kamal KK, Velraj R. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. Journal of Energy Storage 2019;26:101019. https://doi.org/10.1016/j.est.2019.101019.
  • [56] Velmurugan V, Naveen Kumar K., Noorul Haq T, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy 2009;34:1179–86. https://doi.org/10.1016/j.energy.2009.04.029.
  • [57] El-Samadony YAF, Kabeel AE. Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still. Energy 2014;68:744–50. https://doi.org/10.1016/j.energy.2014.01.080.
  • [58] Kabeel AE, Khalil A, Omara ZM, Younes MM. Theoretical and experimental parametric study of modified stepped solar still. Desalination 2012;289:12–20. https://doi.org/10.1016/j.desal.2011.12.023.
  • [59] Rajaseenivasan T, Nelson Raja P, Srithar K. An experimental investigation on a solar still with an integrated flat plate collector. Desalination 2014;347:131–7. https://doi.org/10.1016/j.desal.2014.05.029.
  • [60] Badran AA, Al-Hallaq AA, Eyal Salman IA, Odat MZ. A solar still augmented with a flat-plate collector. Desalination 2005;172:227–34. https://doi.org/10.1016/j.desal.2004.06.203.
  • [61] Singh RV, Kumar S, Hasan MM, Khan ME, Tiwari GN. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 2013;318:25–33. https://doi.org/10.1016/j.desal.2013.03.012.
  • [62] Kumar S, Dubey A, Tiwari GN. A solar still augmented with an evacuated tube collector in forced mode. Desalination 2014;347:15–24. https://doi.org/10.1016/j.desal.2014.05.019.
  • [63] Mohamed AF, Hegazi AA, Sultan GI, El-Said EMS. Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Applied Thermal Engineering 2019;150:1206–15. https://doi.org/10.1016/j.applthermaleng.2019.01.070.
  • [64] Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 2009;249:130–4. https://doi.org/10.1016/j.desal.2009.02.057.
  • [65] Modi K V, Nayi KH, Sharma SS. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundwater for Sustainable Development 2019:100299. https://doi.org/10.1016/j.gsd.2019.100299.
  • [66] Monowe P, Masale M, Nijegorodov N, Vasilenko V. A portable single-basin solar still with an external reflecting booster and an outside condenser. Desalination 2011;280:332–8. https://doi.org/10.1016/j.desal.2011.07.031.
  • [67] Raj SV, Manokar AM. Design and analysis of solar still. Materials Today: Proceedings 2017;4:9179–85. https://doi.org/10.1016/j.matpr.2017.07.275.
  • [68] Singh DB, Tiwari GN. Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. DES 2016;397:75–91. https://doi.org/10.1016/j.desal.2016.06.021.
  • [69] Yousef MS, Hassan H, Ahmed M, Ookawara S. Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions. Energy Procedia 2017;141:18–23. https://doi.org/10.1016/j.egypro.2017.11.005.
  • [70] Dev R, Tiwari GN. Characteristic equation of a passive solar still. DES 2009;245:246–65. https://doi.org/10.1016/j.desal.2008.07.011.
  • [71] Tiwari GN, Shukla SK, Singh IP. Computer modeling of passive / active solar stills by using inner glass temperature 2003;154:171–85.
  • [72] Zurigat YH, Abu-arabi MK. Modelling and performance analysis of a regenerative solar desalination unit 2004;24:1061–72. https://doi.org/10.1016/j.applthermaleng.2003.11.010.
  • [73] Velmurugan V, Deenadayalan CK, Vinod H, Srithar K. Desalination of effluent using fin type solar still 2008;33:1719–27. https://doi.org/10.1016/j.energy.2008.07.001.
  • [74] Ferna L, Rubio E, Porta-ga MA. Modeling thermal asymmetries in double slope solar stills 2004;29:895–906. https://doi.org/10.1016/j.renene.2003.11.001.
  • [75] Dev R, Tiwari GN. Characteristic equation of a hybrid (PV-T) active solar still. Desalination 2010;254:126–37. https://doi.org/10.1016/j.desal.2009.12.004.
  • [76] El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy 2009;86:1187–95. https://doi.org/10.1016/j.apenergy.2008.10.014.
  • [77] Sharma VB, Mullick SC. Calculation of Hourly Output of a Solar Still. Journal of Solar Energy Engineering 2016;115:231–6.
  • [78] Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: A comparative study using characteristic curve. Desalination 2016;388:9–21. https://doi.org/10.1016/j.desal.2016.02.039.
  • [79] Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 2016;130:260–72. https://doi.org/10.1016/j.solener.2016.02.018.
  • [80] Dev R, Singh HN, Tiwari GN. Characteristic equation of double slope passive solar still. Desalination 2011;267:261–6. https://doi.org/10.1016/j.desal.2010.09.037.
  • [81] Rajamanickam MR, Velmurugan P, Ragupathy A, Sivaraman E. Materials Today : Proceedings Use of thermal energy storage materials for enhancement in distillate output of double slope solar still. Materials Today: Proceedings 2020:2–5. https://doi.org/10.1016/j.matpr.2020.02.203.
  • [82] Taylor P, Dwivedi VK, Tiwari GN. Desalination and Water Treatment Thermal modeling and carbon credit earned of a double slope passive solar still 2012:37–41. https://doi.org/10.5004/dwt.2010.856.
  • [83] El-Bahi A, Inan D. Analysis of a parallel double glass solar still with separate condenser. Renewable Energy 1999;17:509–21. https://doi.org/10.1016/S0960-1481(98)00768-X.
  • [84] Singh DB, Tiwari GN, Al-Helal IM, Dwivedi VK, Yadav JK. Effect of energy matrices on life cycle cost analysis of passive solar stills. Solar Energy 2016;134:9–22. https://doi.org/10.1016/j.solener.2016.04.039.
  • [85] Sahota L, Tiwari GN. Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Conversion and Management 2017;135:308–26. https://doi.org/10.1016/j.enconman.2016.12.078.
  • [86] Kumar S, Tiwari GN. Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Solar Energy 2009;83:1656–67. https://doi.org/10.1016/j.solener.2009.06.002.
  • [87] Sampathkumar K, Arjunan T V., Pitchandi P, Senthilkumar P. Active solar distillation-A detailed review. Renewable and Sustainable Energy Reviews 2010;14:1503–26. https://doi.org/10.1016/j.rser.2010.01.023.
  • [88] Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy 2016;130:207–23. https://doi.org/10.1016/j.solener.2016.02.024.
  • [89] Tiwari A, Sodha M. Parametric study of various configurations of hybrid PV / thermal air collector : Experimental validation of theoretical model. Solar Energy 2007;91:17–28. https://doi.org/10.1016/j.solmat.2006.06.061.
  • [90] Hassan H. Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2019.10.050.
  • [91] Dwivedi VK, Tiwari GN. Experimental validation of thermal model of a double slope active solar still under natural circulation mode. DES 2010;250:49–55. https://doi.org/10.1016/j.desal.2009.06.060.
  • [92] Singh G, Kumar S, Tiwari GN. Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination 2011;277:399–406. https://doi.org/10.1016/j.desal.2011.04.064.
  • [93] Tiwari GN, Dimri V, Chel A. Parametric study of an active and passive solar distillation system : Energy and exergy analysis. DES 2009;242:1–18. https://doi.org/10.1016/j.desal.2008.03.027.
Year 2021, Volume: 7 Issue: 5, 1184 - 1205, 01.07.2021
https://doi.org/10.18186/thermal.978021

Abstract

References

  • [1] Gude VG, Nirmalakhandan N, Deng S. Desalination using solar energy: Towards sustainability. Energy 2011;36:78–85. https://doi.org/10.1016/j.energy.2010.11.008.
  • [2] Deng R, Xie L, Lin H, Liu J, Han W. Integration of thermal energy and seawater desalination. Energy 2010;35:4368–74. https://doi.org/10.1016/j.energy.2009.05.025.
  • [3] Mahian O, Ali K, Raviwat S, Phubate T, Chaiwat J, Wongwises S. Solar distillation practice for water desalination systems. Journal of Thermal Engineering 2015;1:287–8. https://doi.org/10.18186/jte.93924.
  • [4] Thakur VK, Gaur MK, Sagar MK. Role of advance solar desalination technique for sustainable development. In: Pandit M, Srivastava L, Rao RV, Bansal JC, editors. Intelligent Computing Applications for Sustainable Real-World Systems, Gwalior, India: Springer Nature Switzerland AG, ICSISCET 2019, PALO 13; 2020, p. 28–38. https://doi.org/10.1007/978-3-030-44758-8_4.
  • [5] Hedayati-mehdiabadi E, Sarhaddi F, Sobhnamayan F. Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2019.07.160.
  • [6] Kalita P, Borah S, Das D. Design and performance evaluation of a novel solar distillation unit. Desalination 2017;416:65–75. https://doi.org/10.1016/j.desal.2017.04.025.
  • [7] Velmurugan V., Senthil Kumaran S., Niranajn Prabhu V. and SK. Productivity enhancement of stepped solar still : Performance analysis. Thermal Science 2008;12:153–63. https://doi.org/10.2298/TSCI0803153V.
  • [8] Muftah AF, Sopian K, Alghoul MA. Performance of basin type stepped solar still enhanced with superior design concepts. Desalination 2017:0–1. https://doi.org/10.1016/j.desal.2017.07.017.
  • [9] Bilal A, Jamil B, Haque NU, Ansari A. Groundwater for Sustainable Development Investigating the effect of pumice stones sensible heat storage on the performance of a solar still. Groundwater for Sustainable Development 2019;9:100228. https://doi.org/10.1016/j.gsd.2019.100228.
  • [10] Pounraj P, Winston DP, Kabeel A., Kumar BP, Manokar, A. Muthu Sathyamurthy R, Cynthia CS. Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance. Energy Conversion and Management 2018;168:371–81. https://doi.org/10.1016/j.enconman.2018.05.011.
  • [11] Shalaby SM, El-Bialy E, El-Sebaii AA. An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination 2016;398:247–55. https://doi.org/10.1016/j.desal.2016.07.042.
  • [12] Rajvanshi AK. Effect of various dyes on solar distillation. Solar Energy 1981;27:51–65. https://doi.org/10.1016/0038-092X(81)90020-7.
  • [13] Okeke CE, Egarievwe SU, Animalu AOE. Effects of coal and charcoal on solar-still performance. Energy 1990;15:1071–3. https://doi.org/10.1016/0360- 5442(90)90035-Z.
  • [14] Alaian WM, Elnegiry EA, Hamed AM. Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination 2016;379:10–5. https://doi.org/10.1016/j.desal.2015.10.010.
  • [15] Murugavel KK, Sivakumar S, Riaz Ahamed J, Chockalingam KKSK, Srithar K. Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy 2010;87:514–23. https://doi.org/10.1016/j.apenergy.2009.07.023.
  • [16] K. MK, Srithar K. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 2011;36:612–20. https://doi.org/10.1016/j.renene.2010.08.009.
  • [17] Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Applied Thermal Engineering 2017;113:684–93. https://doi.org/10.1016/j.applthermaleng.2016.11.085.
  • [18] Tiris C, Tiris M, Erdalli Y, Sohmen M. 98/03107 Experimental studies on a solar still coupled with a flat-plate collector and a single basin still. Fuel and Energy Abstracts 2003;39:287. https://doi.org/10.1016/s0140-6701(98)96632-2.
  • [19] El-Sebaii AA, Ramadan MRI, Aboul-Enein S, Salem N. Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Conversion and Management 2008;49:2839–48. https://doi.org/10.1016/j.enconman.2008.03.002.
  • [20] Tanaka H, Nakatake Y. Effect of inclination of external flat plate reflector of basin type still in winter. Solar Energy 2007;81:1035–42. https://doi.org/10.1016/j.solener.2006.11.006.
  • [21] Deniz E. An Investigation of Some of the Parameters Involved in Inclined Solar Distillation Systems. Environmental Progress 2011;30:1–5. https://doi.org/10.1002/ep.11612.
  • [22] Tiwari GN, Sahota L. Review on the energy and economic efficiencies of passive and active solar distillation systems. Desalination 2017;401:151–79. https://doi.org/10.1016/j.desal.2016.08.023.
  • [23] Arunkumar T, Raj K, Rufuss DDW, Denkenberger D, Tingting G, Xuan L, et al. A review of efficient high productivity solar stills. Renewable and Sustainable Energy Reviews 2019;101:197–220. https://doi.org/10.1016/j.rser.2018.11.013.
  • [24] Bait O, Ameur MS. Enhanced heat and mass transfer in solar stills using nano fl uids : A review. Solar Energy 2018;170:694–722. https://doi.org/10.1016/j.solener.2018.06.020.
  • [25] Kumar A, Singh DB, Mallick A, Kumar S, Kumar N, Dwivedi VK. Performance analysis of specially designed single basin passive solar distillers incorporated with novel solar desalting stills : A review. Solar Energy 2019;185:146–64. https://doi.org/10.1016/j.solener.2019.04.040.
  • [26] Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage : A review. Innovative Food Science and Emerging Technologies 2017;41:34–46. https://doi.org/10.1016/j.ifset.2017.01.004.
  • [27] Grewal R, Manchanda H, Kumar M. A review on applications of phase change materials in solar distillation. 2nd International Conference on Emerging Trends in Science, Engineering & Technology, Pune (India): Mahratta Chamber of Commerce, Industries and Agriculture, Pune (India); 2018, p. 722–35.
  • [28] Kabeel AE, Arunkumar T, Denkenberger DC, Sathyamurthy R. Performance enhancement of solar still through efficient heat exchange mechanism – A review. Applied Thermal Engineering 2017;114:815–36. https://doi.org/10.1016/j.applthermaleng.2016.12.044.
  • [29] Das D, Bordoloi U, Kalita P, Boehm RF, Dilip A. Groundwater for Sustainable Development Solar still distillate enhancement techniques and recent developments. Groundwater for Sustainable Development 2020;10:100360. https://doi.org/10.1016/j.gsd.2020.100360.
  • [30] Pansal K, Ramani B, Sadasivuni K, Panchal H, Manokar M, Sathyamurthy R, et al. Use of solar photovoltaic with active solar still to improve distillate output: A review. Groundwater for Sustainable Development 2020:100341. https://doi.org/10.1016/j.gsd.2020.100341.
  • [31] Agrawal A, Rana RS. Theoretical and experimental performance evaluation of single-slope single-basin solar still with multiple V-shaped floating wicks. Heliyon 2019:e01525. https://doi.org/10.1016/j.heliyon.2019.e01525.
  • [32] Ayuthaya RPN, Namprakai P, Ampun W. The thermal performance of an ethanol solar still with fin plate to increase productivity. Renewable Energy 2013;54:227–34. https://doi.org/10.1016/j.renene.2012.08.004.
  • [33] Thakur VK, Gaur MK. A study on passive solar still with nanoparticles 2020;2:26–38. https://doi.org/https://doi.org/10.32438/IJET.203009.
  • [34] Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 2016;130:260–72. https://doi.org/10.1016/j.solener.2016.02.018.
  • [35] Gupta B, Shankar P, Sharma R, Baredar P. Performance Enhancement using Nano Particles in Modified Passive Solar Still. Procedia Technology 2016;25:1209–16. https://doi.org/10.1016/j.protcy.2016.08.208.
  • [36] Kabeel AE, Omara ZM, Essa FA, Abdullah AS, Arunkumar T. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alexandria Engineering Journal 2017. https://doi.org/10.1016/j.aej.2017.08.014.
  • [37] Nijmeh S, Odeh S, Akash B. Experimental and theoretical study of a single-basin solar sill in Jordan. International Communications in Heat and Mass Transfer 2005;32:565–72. https://doi.org/10.1016/j.icheatmasstransfer.2004.06.006.
  • [38] Gupta B, Kumar A, Baredar P V. Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Frontiers in Materials 2017;4:1–7. https://doi.org/10.3389/fmats.2017.00023.
  • [39] El-Sebaii AA, Aboul-Enein S, Ramadan MRI, E El-Bialy. Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber. Energy 2000;25:35–49. https://doi.org/10.1016/S0360-5442(99)00037-7.
  • [40] Sharshir SW, Peng G, Elsheikh AH, Edreis EMA. Energy and exergy analysis of solar stills with micro / nano particles : A comparative study. Energy Conversion and Management 2018;177:363–75. https://doi.org/10.1016/j.enconman.2018.09.074.
  • [41] Shanmugan S, Palani S, Janarthanan B. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination 2017:0–1. https://doi.org/10.1016/j.desal.2017.11.045.
  • [42] Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nano fluids. DES 2015;360:45–51. https://doi.org/10.1016/j.desal.2015.01.004.
  • [43] Gnanadason MK, Kumar PS, Rajakumar S, Yousuf MHS. Effect of nanofluids in a vacuum single basin solar still. International Journal of Advanced Engineering Research and Studies 2011;I:171–7.
  • [44] Arunkumar T, Jayaprakash, R. Denkenberger D, Ahsan A, Okundamiya MS, Kumar S, Hiroshi T, et al. An experimental study on a hemispherical solar still. Desalination 2012;286:342–8. https://doi.org/10.1016/j.desal.2011.11.047.
  • [45] Dev R, Abdul-Wahab SA, Tiwari GN. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Applied Energy 2011;88:252–64. https://doi.org/10.1016/j.apenergy.2010.08.001.
  • [46] Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Enhancement of solar still productivity using floating perforated black plate. Energy Conversion and Management 2002;43:937–46. https://doi.org/10.1016/S0196-8904(01)00079-6.
  • [47] Phadatare MK, Verma SK. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination 2007;217:267–75. https://doi.org/10.1016/j.desal.2007.03.006.
  • [48] Sarhaddi F, Farshchi F, Aghaei H, Amir S, Seyed H. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Conversion and Management 2017;133:97–109. https://doi.org/10.1016/j.enconman.2016.11.044.
  • [49] Omara ZM, Kabeel AE, Younes MM. Enhancing the stepped solar still performance using internal and external reflectors. Energy Conversion and Management 2014;78:876–81. https://doi.org/10.1016/j.enconman.2013.07.092.
  • [50] Faegh M, Behshad M. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes 2017;409:128–35. https://doi.org/10.1016/j.desal.2017.01.023.
  • [51] Abu-arabi M, Al-harahsheh M, Ahmad M, Mousa H. Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector. Journal of Energy Storage 2020;29:101372. https://doi.org/10.1016/j.est.2020.101372.
  • [52] Mazraeh AE, Babayan M, Yari M, Se AM, Saha SC. Theoretical study on the performance of a solar still system integrated with PCM-PV module for sustainable water and power generation 2018;443:184–97. https://doi.org/10.1016/j.desal.2018.05.024.
  • [53] Al-harahsheh M, Abu-arabi M, Mousa H, Alzghoul Z. Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering 2018;128:1030–40. https://doi.org/10.1016/j.applthermaleng.2017.09.073.
  • [54] Cheng W, Huo Y, Nian Y. Performance of solar still using shape-stabilized PCM : Experimental and theoretical investigation. Desalination 2019;455:89–99. https://doi.org/10.1016/j.desal.2019.01.007.
  • [55] Vigneswaran VS, Kumaresan G, Dinakar B V., Kamal KK, Velraj R. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. Journal of Energy Storage 2019;26:101019. https://doi.org/10.1016/j.est.2019.101019.
  • [56] Velmurugan V, Naveen Kumar K., Noorul Haq T, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy 2009;34:1179–86. https://doi.org/10.1016/j.energy.2009.04.029.
  • [57] El-Samadony YAF, Kabeel AE. Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still. Energy 2014;68:744–50. https://doi.org/10.1016/j.energy.2014.01.080.
  • [58] Kabeel AE, Khalil A, Omara ZM, Younes MM. Theoretical and experimental parametric study of modified stepped solar still. Desalination 2012;289:12–20. https://doi.org/10.1016/j.desal.2011.12.023.
  • [59] Rajaseenivasan T, Nelson Raja P, Srithar K. An experimental investigation on a solar still with an integrated flat plate collector. Desalination 2014;347:131–7. https://doi.org/10.1016/j.desal.2014.05.029.
  • [60] Badran AA, Al-Hallaq AA, Eyal Salman IA, Odat MZ. A solar still augmented with a flat-plate collector. Desalination 2005;172:227–34. https://doi.org/10.1016/j.desal.2004.06.203.
  • [61] Singh RV, Kumar S, Hasan MM, Khan ME, Tiwari GN. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 2013;318:25–33. https://doi.org/10.1016/j.desal.2013.03.012.
  • [62] Kumar S, Dubey A, Tiwari GN. A solar still augmented with an evacuated tube collector in forced mode. Desalination 2014;347:15–24. https://doi.org/10.1016/j.desal.2014.05.019.
  • [63] Mohamed AF, Hegazi AA, Sultan GI, El-Said EMS. Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Applied Thermal Engineering 2019;150:1206–15. https://doi.org/10.1016/j.applthermaleng.2019.01.070.
  • [64] Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 2009;249:130–4. https://doi.org/10.1016/j.desal.2009.02.057.
  • [65] Modi K V, Nayi KH, Sharma SS. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundwater for Sustainable Development 2019:100299. https://doi.org/10.1016/j.gsd.2019.100299.
  • [66] Monowe P, Masale M, Nijegorodov N, Vasilenko V. A portable single-basin solar still with an external reflecting booster and an outside condenser. Desalination 2011;280:332–8. https://doi.org/10.1016/j.desal.2011.07.031.
  • [67] Raj SV, Manokar AM. Design and analysis of solar still. Materials Today: Proceedings 2017;4:9179–85. https://doi.org/10.1016/j.matpr.2017.07.275.
  • [68] Singh DB, Tiwari GN. Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. DES 2016;397:75–91. https://doi.org/10.1016/j.desal.2016.06.021.
  • [69] Yousef MS, Hassan H, Ahmed M, Ookawara S. Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions. Energy Procedia 2017;141:18–23. https://doi.org/10.1016/j.egypro.2017.11.005.
  • [70] Dev R, Tiwari GN. Characteristic equation of a passive solar still. DES 2009;245:246–65. https://doi.org/10.1016/j.desal.2008.07.011.
  • [71] Tiwari GN, Shukla SK, Singh IP. Computer modeling of passive / active solar stills by using inner glass temperature 2003;154:171–85.
  • [72] Zurigat YH, Abu-arabi MK. Modelling and performance analysis of a regenerative solar desalination unit 2004;24:1061–72. https://doi.org/10.1016/j.applthermaleng.2003.11.010.
  • [73] Velmurugan V, Deenadayalan CK, Vinod H, Srithar K. Desalination of effluent using fin type solar still 2008;33:1719–27. https://doi.org/10.1016/j.energy.2008.07.001.
  • [74] Ferna L, Rubio E, Porta-ga MA. Modeling thermal asymmetries in double slope solar stills 2004;29:895–906. https://doi.org/10.1016/j.renene.2003.11.001.
  • [75] Dev R, Tiwari GN. Characteristic equation of a hybrid (PV-T) active solar still. Desalination 2010;254:126–37. https://doi.org/10.1016/j.desal.2009.12.004.
  • [76] El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Applied Energy 2009;86:1187–95. https://doi.org/10.1016/j.apenergy.2008.10.014.
  • [77] Sharma VB, Mullick SC. Calculation of Hourly Output of a Solar Still. Journal of Solar Energy Engineering 2016;115:231–6.
  • [78] Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: A comparative study using characteristic curve. Desalination 2016;388:9–21. https://doi.org/10.1016/j.desal.2016.02.039.
  • [79] Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy 2016;130:260–72. https://doi.org/10.1016/j.solener.2016.02.018.
  • [80] Dev R, Singh HN, Tiwari GN. Characteristic equation of double slope passive solar still. Desalination 2011;267:261–6. https://doi.org/10.1016/j.desal.2010.09.037.
  • [81] Rajamanickam MR, Velmurugan P, Ragupathy A, Sivaraman E. Materials Today : Proceedings Use of thermal energy storage materials for enhancement in distillate output of double slope solar still. Materials Today: Proceedings 2020:2–5. https://doi.org/10.1016/j.matpr.2020.02.203.
  • [82] Taylor P, Dwivedi VK, Tiwari GN. Desalination and Water Treatment Thermal modeling and carbon credit earned of a double slope passive solar still 2012:37–41. https://doi.org/10.5004/dwt.2010.856.
  • [83] El-Bahi A, Inan D. Analysis of a parallel double glass solar still with separate condenser. Renewable Energy 1999;17:509–21. https://doi.org/10.1016/S0960-1481(98)00768-X.
  • [84] Singh DB, Tiwari GN, Al-Helal IM, Dwivedi VK, Yadav JK. Effect of energy matrices on life cycle cost analysis of passive solar stills. Solar Energy 2016;134:9–22. https://doi.org/10.1016/j.solener.2016.04.039.
  • [85] Sahota L, Tiwari GN. Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Conversion and Management 2017;135:308–26. https://doi.org/10.1016/j.enconman.2016.12.078.
  • [86] Kumar S, Tiwari GN. Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Solar Energy 2009;83:1656–67. https://doi.org/10.1016/j.solener.2009.06.002.
  • [87] Sampathkumar K, Arjunan T V., Pitchandi P, Senthilkumar P. Active solar distillation-A detailed review. Renewable and Sustainable Energy Reviews 2010;14:1503–26. https://doi.org/10.1016/j.rser.2010.01.023.
  • [88] Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy 2016;130:207–23. https://doi.org/10.1016/j.solener.2016.02.024.
  • [89] Tiwari A, Sodha M. Parametric study of various configurations of hybrid PV / thermal air collector : Experimental validation of theoretical model. Solar Energy 2007;91:17–28. https://doi.org/10.1016/j.solmat.2006.06.061.
  • [90] Hassan H. Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2019.10.050.
  • [91] Dwivedi VK, Tiwari GN. Experimental validation of thermal model of a double slope active solar still under natural circulation mode. DES 2010;250:49–55. https://doi.org/10.1016/j.desal.2009.06.060.
  • [92] Singh G, Kumar S, Tiwari GN. Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination 2011;277:399–406. https://doi.org/10.1016/j.desal.2011.04.064.
  • [93] Tiwari GN, Dimri V, Chel A. Parametric study of an active and passive solar distillation system : Energy and exergy analysis. DES 2009;242:1–18. https://doi.org/10.1016/j.desal.2008.03.027.
There are 93 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Vikas Thakur This is me 0000-0001-5904-5949

M.k. Gaur This is me

M.k. Sagar This is me

G.n. Tıwarı This is me

Publication Date July 1, 2021
Submission Date January 11, 2020
Published in Issue Year 2021 Volume: 7 Issue: 5

Cite

APA Thakur, V., Gaur, M., Sagar, M., Tıwarı, G. (2021). A study on heat and mass transfer analysis of solar distillation system. Journal of Thermal Engineering, 7(5), 1184-1205. https://doi.org/10.18186/thermal.978021
AMA Thakur V, Gaur M, Sagar M, Tıwarı G. A study on heat and mass transfer analysis of solar distillation system. Journal of Thermal Engineering. July 2021;7(5):1184-1205. doi:10.18186/thermal.978021
Chicago Thakur, Vikas, M.k. Gaur, M.k. Sagar, and G.n. Tıwarı. “A Study on Heat and Mass Transfer Analysis of Solar Distillation System”. Journal of Thermal Engineering 7, no. 5 (July 2021): 1184-1205. https://doi.org/10.18186/thermal.978021.
EndNote Thakur V, Gaur M, Sagar M, Tıwarı G (July 1, 2021) A study on heat and mass transfer analysis of solar distillation system. Journal of Thermal Engineering 7 5 1184–1205.
IEEE V. Thakur, M. Gaur, M. Sagar, and G. Tıwarı, “A study on heat and mass transfer analysis of solar distillation system”, Journal of Thermal Engineering, vol. 7, no. 5, pp. 1184–1205, 2021, doi: 10.18186/thermal.978021.
ISNAD Thakur, Vikas et al. “A Study on Heat and Mass Transfer Analysis of Solar Distillation System”. Journal of Thermal Engineering 7/5 (July 2021), 1184-1205. https://doi.org/10.18186/thermal.978021.
JAMA Thakur V, Gaur M, Sagar M, Tıwarı G. A study on heat and mass transfer analysis of solar distillation system. Journal of Thermal Engineering. 2021;7:1184–1205.
MLA Thakur, Vikas et al. “A Study on Heat and Mass Transfer Analysis of Solar Distillation System”. Journal of Thermal Engineering, vol. 7, no. 5, 2021, pp. 1184-05, doi:10.18186/thermal.978021.
Vancouver Thakur V, Gaur M, Sagar M, Tıwarı G. A study on heat and mass transfer analysis of solar distillation system. Journal of Thermal Engineering. 2021;7(5):1184-205.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering