Derleme
BibTex RIS Kaynak Göster

A review on convective heat augmentation techniques in solar thermal collector using nanofluid

Yıl 2021, Cilt: 7 Sayı: 5, 1257 - 1266, 01.07.2021
https://doi.org/10.18186/thermal.978064

Öz

Solar water heating system is convincing technology to convert solar energy into thermal energy. According to the survey, approximately 42% of refined crude oil is used in industries and commercial applications for heating processes. Fossil fuel is the main energy source that is depleting continuously. Solar energy is an environment-friendly energy source, which can fulfill energy demand. Solar thermal collectors are most popular in domestic as well as industrial sectors for water heating due to their ease of operation and simple maintenance. Extensive work is going on to improve the thermal performance of solar thermal collectors using passive techniques. Passive techniques include the use of nanofluid, twisted tape, Phase Changing Materials. Active and passive techniques have a significant contribution to solar thermal collector thermal performance enhancement. This paper reviews the work carried out and current progress to enhance the thermal efficiency of solar water heaters using nanofluid. In addition to this, a detailed discussion and limitations of existing research have made from this discussion, research gaps are identified and possible future modifications are suggested.

Kaynakça

  • [1] Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Conversion and Management. 2015 Nov 15;105:1377-88. doi: 10.1016/j.enconman.2015.09.009.
  • [2] Mahbubul IM, Khan MM, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur RJ. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renewable energy. 2018 Jun 1;121:36-44. doi: 10.1016/j.renene.2018.01.006.
  • [3] Iranmanesh S, Mehrali M, Sadeghinezhad E, Ang BC, Ong HC, Esmaeilzadeh A. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method. International Communications in Heat and Mass Transfer. 2016 Dec 1;79:74-80. doi: 10.1016/j.icheatmasstransfer.2016.10.004.
  • [4] Moravej M, Soozanyar A. An Experimental Investigation of the Efficiency of A Stationary Helical Solar Water Heater. Current World Environment. 2017 Aug 1;12(2):250.
  • [5] Sabiha MA, Saidur R, Mekhilef S, Mahian O. Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews. 2015 Nov 1;51:1038-54. doi: 10.1016/j.rser.2015.07.016.
  • [6] Sandeep HM, Arunachala UC. Solar parabolic trough collectors: a review on heat transfer augmentation techniques. Renewable and Sustainable Energy Reviews. 2017 Mar 1;69:1218-31. doi: 10.1016/j.rser.2016.11.242.
  • [7] Sabiha M, Saidur R, Mekhilef S. An experimental study on Evacuated tube solar collector using nanofluids. InInternational Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR-15) Sabah, Malaysia 2015 Jan 1 (Vol. 2, pp. 42-49).
  • [8] Wang Z, Yang W, Qiu F, Zhang X, Zhao X. Solar water heating: From theory, application, marketing and research. Renewable and Sustainable Energy Reviews. 2015 Jan 1;41:68-84. doi: 10.1016/j.rser.2014.08.026.
  • [9] Jaisankar S, Ananth J, Thulasi S, Jayasuthakar ST, Sheeba KN. A comprehensive review on solar water heaters. Renewable and Sustainable Energy Reviews. 2011 Aug 1;15(6):3045-50. doi: 10.1016/j.rser.2011.03.009.
  • [10] Khurana D, Subudhi S. Forced convection of Al 2 O 3/water nanofluids with simple and modified spiral tape inserts. Heat and Mass Transfer. 2019 Oct;55(10):2831-43.
  • [11] Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chemical Engineering Research and Design. 2018 May 1;133:26-39. doi: 10.1016/j.cherd.2018.02.030.
  • [12] Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering. 2013 Jan 1;64:1474-84. doi: 10.1016/j.proeng.2013.09.229.
  • [13] Yao K, Li T, Tao H, Wei J, Feng K. Performance evaluation of all-glass evacuated tube solar water heater with twist tape inserts using CFD. Energy Procedia. 2015 May 1;70:332-9. doi: 10.1016/j.egypro.2015.02.131.
  • [14] Sundar LS, Singh MK, Punnaiah V, Sousa AC. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renewable energy. 2018 Apr 1;119:820-33. doi: 10.1016/j.renene.2017.10.056.
  • [15] Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer. 2010 Mar 1;53(7-8):1409-16. doi: 10.1016/j.ijheatmasstransfer.2009.12.016.
  • [16] Chougule SS, Sahu SK. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts–a comparative study. Chemical Engineering and Processing: Process Intensification. 2015 Feb 1;88:78-88. doi: 10.1016/j.cep.2014.12.005.
  • [17] Chopra K, Tyagi VV, Pandey AK, Sari A. Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. applied energy. 2018 Oct 15;228:351-89. doi: 10.1016/j.apenergy.2018.06.067.
  • [18] Waghmare AV, Pise AT. Augmentation of Heat Transfer Using High Thermal Conductive. in Proceedings of the 21st National & 10TH ISHMT-ASME Heat and Mass Transfer Conference, 2011, pp. 1–7, doi: 10.1016/j.jaci.2013.05.012.
  • [19] Vishwanath WA, Tukaram PA, Mahaling PS. Experimentation To Reduce Melting Time in Latent Heat. in 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamic, 2013, pp. 1–5.
  • [20] Advancement and Recent Innovations in Mechanical, Production and Industrial Engineering. ELk Asia Pacific Journals, 2015, pp. 1–240.
  • [21] Alfaro-Ayala JA, López-Núñez OA, Gómez-Castro FI, Ramírez-Minguela JJ, Uribe-Ramírez AR, Belman-Flores JM, Cano-Andrade S. Optimization of a solar collector with evacuated tubes using the simulated annealing and computational fluid dynamics. Energy conversion and management. 2018 Jun 15;166:343-55. doi: 10.1016/j.enconman.2018.04.039.
  • [22] Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews. 2015 Mar 1;43:164-77. pp. 164–177, 2015, doi: 10.1016/j.rser.2014.11.023.
  • [23] Kim H, Ham J, Park C, Cho H. Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy. 2016 Jan 1;94:497-507. doi: 10.1016/j.energy.2015.11.021.
  • [24] Tong Y, Kim J, Cho H. Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renewable energy. 2015 Nov 1;83:463-73. doi: 10.1016/j.renene.2015.04.042.
  • [25] Kayaa H, Arslanb K. Thermal Performance of an Evacuated U-Tube Solar Collector Using TiO2/EG-Water Nanofluid. no. August 2018, 2017.
  • [26] Varma KK, Kishore PS, Prasad PD. Enhancement of heat transfer using Fe3O4/water nanofluid with varying cut-radius twisted tape inserts. International Journal of Applied Engineering Research. 2017;12(18):7088-95.
  • [27] Ghiasi EK, Saleh R. Unsteady shrinking embedded horizontal sheet subjected to inclined Lorentz force and Joule heating, an analytical solution. Results Phys 11: 65–71. doi: 10.1016/j.rinp.2018.07.026.
  • [28] Ghiasi EK, Saleh R. 2D flow of Casson fluid with nonuniform heat source/sink and Joule heating. Frontiers in Heat and Mass Transfer. 2019;12(4). doi: 10.5098/hmt.12.4.
  • [29] Ghiasi EK, Saleh R. Nonlinear stability and thermomechanical analysis of hydromagnetic Falkner–Skan Casson conjugate fluid flow over an angular–geometric surface based on Buongiorno’s model using homotopy analysis method and its extension. Pramana. 2019 Jan;92(1):1-2. doi: 10.1007/s12043-018-1667-1.
  • [30] Aristov SN, Prosviryakov EY. Nonuniform convective Couette flow. Fluid Dynamics. 2016 Sep;51(5):581-7. doi: 10.1134/S001546281605001X.
  • [31] Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renewable and sustainable energy reviews. 2011 Aug 1;15(6):3271-7. doi: 10.1016/j.rser.2011.04.025.
  • [32] Ghaderian J, Sidik NA, Kasaeian A, Ghaderian S, Okhovat A, Pakzadeh A, Samion S, Yahya WJ. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Applied Thermal Engineering. 2017 Jul 5;121:520-36. doi: 10.1016/j.applthermaleng.2017.04.117.
  • [33] Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy conversion and management. 2015 May 1;95:160-9. doi: 10.1016/j.enconman.2015.02.017.
  • [34] Kaya H, Arslan K, Eltugral N. Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids. Renewable energy. 2018 Jul 1;122:329-38. doi: 10.1016/j.renene.2018.01.115.
  • [35] Barewar SD, Tawri S, Chougule SS. Experimental investigation of thermal conductivity and its ANN modeling for glycol-based Ag/ZnO hybrid nanofluids with low concentration. Journal of Thermal Analysis and Calorimetry. 2020 Feb;139(3):1779-90. doi: 10.1007/s10973-019-08618-6.
  • [36] Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering. 2013 Jan 1;64:1474-84. doi: 10.1016/j.proeng.2013.09.229.
  • [37] Ghaderian J, Sidik NA. An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector. International Journal of Heat and Mass Transfer. 2017 May 1;108:972-87. doi: 10.1016/j.ijheatmasstransfer.2013.01.035.
  • [38] Pise GA, Salve SS, Pise AT, Pise AA. Investigation of solar heat pipe collector using nanofluid and surfactant. Energy Procedia. 2016 Dec 1;90:481-91. doi: 10.1016/j.egypro.2016.11.215.
  • [39] Safikhani H, Abbassi A, Khalkhali A, Kalteh M. Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms. Advanced Powder Technology. 2014 Sep 1;25(5):1608-17. doi: 10.1016/j.apt.2014.05.014.
  • [40] Chougule SS, Sahu SK. Performance of carbon nanotubes–water nanofluid charged wickless heat pipe flat plate solar collectors having different filling ratio. Journal of Solar Energy Engineering. 2015 Apr 1;137(2). doi: 10.1115/1.4028701.
  • [41] Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. International Journal of Heat and Mass Transfer. 2018 Sep 1;124:742-51. doi: 10.1016/j.ijheatmasstransfer.2018.03.103.
  • [42] Moslemi HR, Keshtkar MM. Sensitivity analysis and thermal performance optimization of evacuated U-tube solar collector using genetic algorithm. International Journal of Heat and Technology. 2018 Dec 1;36(4):1193-202.
  • [43] Tafarroj MM, Daneshazarian R, Kasaeian A. CFD Modeling and Predicting the Performance of Direct Absorption of Nanofluids in Trough Collector. Elsevier Ltd, 2018.
  • [44] Chougule SS, Nirgude VV, Gharge PD, Mayank M, Sahu SK. Heat transfer enhancements of low volume concentration CNT/water nanofluid and wire coil inserts in a circular tube. Energy Procedia. 2016 Dec 1;90:552-8. doi: 10.1016/j.egypro.2016.11.223.
  • [45] Ramesh R, Arulmozhi P, Sathiskumar M. Experimental Analysis of Flat Plate Solar Water Heater using Cerium Oxide/Water Nano Fluid Under Forced Convection. Int. J. Eng. Res. Technol. 2017;6(6):361-5.
  • [46] Sharafeldin MA, Grof G. Evacuated tube solar collector performance using CeO2/water nanofluid. Journal of Cleaner Production. 2018 Jun 1;185:347-56. doi: 10.1016/j.jclepro.2018.03.054.
  • [47] Mahendran M, Lee GC, Sharma KV, Shahrani A, Bakar RA. Performance of evacuated tube solar collector using water-based titanium oxide nanofluid. Journal of Mechanical Engineering and Sciences. 2012;3:301-10. doi: 10.1017/CBO9781107415324.004.
  • [48] Ishii S, Sugavaneshwar RP, Nagao T. Titanium nitride nanoparticles as plasmonic solar heat transducers. The Journal of Physical Chemistry C. 2016 Feb 4;120(4):2343-8. doi: 10.1021/acs.jpcc.5b09604.
Yıl 2021, Cilt: 7 Sayı: 5, 1257 - 1266, 01.07.2021
https://doi.org/10.18186/thermal.978064

Öz

Kaynakça

  • [1] Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Conversion and Management. 2015 Nov 15;105:1377-88. doi: 10.1016/j.enconman.2015.09.009.
  • [2] Mahbubul IM, Khan MM, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur RJ. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renewable energy. 2018 Jun 1;121:36-44. doi: 10.1016/j.renene.2018.01.006.
  • [3] Iranmanesh S, Mehrali M, Sadeghinezhad E, Ang BC, Ong HC, Esmaeilzadeh A. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method. International Communications in Heat and Mass Transfer. 2016 Dec 1;79:74-80. doi: 10.1016/j.icheatmasstransfer.2016.10.004.
  • [4] Moravej M, Soozanyar A. An Experimental Investigation of the Efficiency of A Stationary Helical Solar Water Heater. Current World Environment. 2017 Aug 1;12(2):250.
  • [5] Sabiha MA, Saidur R, Mekhilef S, Mahian O. Progress and latest developments of evacuated tube solar collectors. Renewable and Sustainable Energy Reviews. 2015 Nov 1;51:1038-54. doi: 10.1016/j.rser.2015.07.016.
  • [6] Sandeep HM, Arunachala UC. Solar parabolic trough collectors: a review on heat transfer augmentation techniques. Renewable and Sustainable Energy Reviews. 2017 Mar 1;69:1218-31. doi: 10.1016/j.rser.2016.11.242.
  • [7] Sabiha M, Saidur R, Mekhilef S. An experimental study on Evacuated tube solar collector using nanofluids. InInternational Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR-15) Sabah, Malaysia 2015 Jan 1 (Vol. 2, pp. 42-49).
  • [8] Wang Z, Yang W, Qiu F, Zhang X, Zhao X. Solar water heating: From theory, application, marketing and research. Renewable and Sustainable Energy Reviews. 2015 Jan 1;41:68-84. doi: 10.1016/j.rser.2014.08.026.
  • [9] Jaisankar S, Ananth J, Thulasi S, Jayasuthakar ST, Sheeba KN. A comprehensive review on solar water heaters. Renewable and Sustainable Energy Reviews. 2011 Aug 1;15(6):3045-50. doi: 10.1016/j.rser.2011.03.009.
  • [10] Khurana D, Subudhi S. Forced convection of Al 2 O 3/water nanofluids with simple and modified spiral tape inserts. Heat and Mass Transfer. 2019 Oct;55(10):2831-43.
  • [11] Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chemical Engineering Research and Design. 2018 May 1;133:26-39. doi: 10.1016/j.cherd.2018.02.030.
  • [12] Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering. 2013 Jan 1;64:1474-84. doi: 10.1016/j.proeng.2013.09.229.
  • [13] Yao K, Li T, Tao H, Wei J, Feng K. Performance evaluation of all-glass evacuated tube solar water heater with twist tape inserts using CFD. Energy Procedia. 2015 May 1;70:332-9. doi: 10.1016/j.egypro.2015.02.131.
  • [14] Sundar LS, Singh MK, Punnaiah V, Sousa AC. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renewable energy. 2018 Apr 1;119:820-33. doi: 10.1016/j.renene.2017.10.056.
  • [15] Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer. 2010 Mar 1;53(7-8):1409-16. doi: 10.1016/j.ijheatmasstransfer.2009.12.016.
  • [16] Chougule SS, Sahu SK. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts–a comparative study. Chemical Engineering and Processing: Process Intensification. 2015 Feb 1;88:78-88. doi: 10.1016/j.cep.2014.12.005.
  • [17] Chopra K, Tyagi VV, Pandey AK, Sari A. Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications. applied energy. 2018 Oct 15;228:351-89. doi: 10.1016/j.apenergy.2018.06.067.
  • [18] Waghmare AV, Pise AT. Augmentation of Heat Transfer Using High Thermal Conductive. in Proceedings of the 21st National & 10TH ISHMT-ASME Heat and Mass Transfer Conference, 2011, pp. 1–7, doi: 10.1016/j.jaci.2013.05.012.
  • [19] Vishwanath WA, Tukaram PA, Mahaling PS. Experimentation To Reduce Melting Time in Latent Heat. in 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamic, 2013, pp. 1–5.
  • [20] Advancement and Recent Innovations in Mechanical, Production and Industrial Engineering. ELk Asia Pacific Journals, 2015, pp. 1–240.
  • [21] Alfaro-Ayala JA, López-Núñez OA, Gómez-Castro FI, Ramírez-Minguela JJ, Uribe-Ramírez AR, Belman-Flores JM, Cano-Andrade S. Optimization of a solar collector with evacuated tubes using the simulated annealing and computational fluid dynamics. Energy conversion and management. 2018 Jun 15;166:343-55. doi: 10.1016/j.enconman.2018.04.039.
  • [22] Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews. 2015 Mar 1;43:164-77. pp. 164–177, 2015, doi: 10.1016/j.rser.2014.11.023.
  • [23] Kim H, Ham J, Park C, Cho H. Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy. 2016 Jan 1;94:497-507. doi: 10.1016/j.energy.2015.11.021.
  • [24] Tong Y, Kim J, Cho H. Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renewable energy. 2015 Nov 1;83:463-73. doi: 10.1016/j.renene.2015.04.042.
  • [25] Kayaa H, Arslanb K. Thermal Performance of an Evacuated U-Tube Solar Collector Using TiO2/EG-Water Nanofluid. no. August 2018, 2017.
  • [26] Varma KK, Kishore PS, Prasad PD. Enhancement of heat transfer using Fe3O4/water nanofluid with varying cut-radius twisted tape inserts. International Journal of Applied Engineering Research. 2017;12(18):7088-95.
  • [27] Ghiasi EK, Saleh R. Unsteady shrinking embedded horizontal sheet subjected to inclined Lorentz force and Joule heating, an analytical solution. Results Phys 11: 65–71. doi: 10.1016/j.rinp.2018.07.026.
  • [28] Ghiasi EK, Saleh R. 2D flow of Casson fluid with nonuniform heat source/sink and Joule heating. Frontiers in Heat and Mass Transfer. 2019;12(4). doi: 10.5098/hmt.12.4.
  • [29] Ghiasi EK, Saleh R. Nonlinear stability and thermomechanical analysis of hydromagnetic Falkner–Skan Casson conjugate fluid flow over an angular–geometric surface based on Buongiorno’s model using homotopy analysis method and its extension. Pramana. 2019 Jan;92(1):1-2. doi: 10.1007/s12043-018-1667-1.
  • [30] Aristov SN, Prosviryakov EY. Nonuniform convective Couette flow. Fluid Dynamics. 2016 Sep;51(5):581-7. doi: 10.1134/S001546281605001X.
  • [31] Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renewable and sustainable energy reviews. 2011 Aug 1;15(6):3271-7. doi: 10.1016/j.rser.2011.04.025.
  • [32] Ghaderian J, Sidik NA, Kasaeian A, Ghaderian S, Okhovat A, Pakzadeh A, Samion S, Yahya WJ. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Applied Thermal Engineering. 2017 Jul 5;121:520-36. doi: 10.1016/j.applthermaleng.2017.04.117.
  • [33] Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy conversion and management. 2015 May 1;95:160-9. doi: 10.1016/j.enconman.2015.02.017.
  • [34] Kaya H, Arslan K, Eltugral N. Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids. Renewable energy. 2018 Jul 1;122:329-38. doi: 10.1016/j.renene.2018.01.115.
  • [35] Barewar SD, Tawri S, Chougule SS. Experimental investigation of thermal conductivity and its ANN modeling for glycol-based Ag/ZnO hybrid nanofluids with low concentration. Journal of Thermal Analysis and Calorimetry. 2020 Feb;139(3):1779-90. doi: 10.1007/s10973-019-08618-6.
  • [36] Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering. 2013 Jan 1;64:1474-84. doi: 10.1016/j.proeng.2013.09.229.
  • [37] Ghaderian J, Sidik NA. An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector. International Journal of Heat and Mass Transfer. 2017 May 1;108:972-87. doi: 10.1016/j.ijheatmasstransfer.2013.01.035.
  • [38] Pise GA, Salve SS, Pise AT, Pise AA. Investigation of solar heat pipe collector using nanofluid and surfactant. Energy Procedia. 2016 Dec 1;90:481-91. doi: 10.1016/j.egypro.2016.11.215.
  • [39] Safikhani H, Abbassi A, Khalkhali A, Kalteh M. Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms. Advanced Powder Technology. 2014 Sep 1;25(5):1608-17. doi: 10.1016/j.apt.2014.05.014.
  • [40] Chougule SS, Sahu SK. Performance of carbon nanotubes–water nanofluid charged wickless heat pipe flat plate solar collectors having different filling ratio. Journal of Solar Energy Engineering. 2015 Apr 1;137(2). doi: 10.1115/1.4028701.
  • [41] Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. International Journal of Heat and Mass Transfer. 2018 Sep 1;124:742-51. doi: 10.1016/j.ijheatmasstransfer.2018.03.103.
  • [42] Moslemi HR, Keshtkar MM. Sensitivity analysis and thermal performance optimization of evacuated U-tube solar collector using genetic algorithm. International Journal of Heat and Technology. 2018 Dec 1;36(4):1193-202.
  • [43] Tafarroj MM, Daneshazarian R, Kasaeian A. CFD Modeling and Predicting the Performance of Direct Absorption of Nanofluids in Trough Collector. Elsevier Ltd, 2018.
  • [44] Chougule SS, Nirgude VV, Gharge PD, Mayank M, Sahu SK. Heat transfer enhancements of low volume concentration CNT/water nanofluid and wire coil inserts in a circular tube. Energy Procedia. 2016 Dec 1;90:552-8. doi: 10.1016/j.egypro.2016.11.223.
  • [45] Ramesh R, Arulmozhi P, Sathiskumar M. Experimental Analysis of Flat Plate Solar Water Heater using Cerium Oxide/Water Nano Fluid Under Forced Convection. Int. J. Eng. Res. Technol. 2017;6(6):361-5.
  • [46] Sharafeldin MA, Grof G. Evacuated tube solar collector performance using CeO2/water nanofluid. Journal of Cleaner Production. 2018 Jun 1;185:347-56. doi: 10.1016/j.jclepro.2018.03.054.
  • [47] Mahendran M, Lee GC, Sharma KV, Shahrani A, Bakar RA. Performance of evacuated tube solar collector using water-based titanium oxide nanofluid. Journal of Mechanical Engineering and Sciences. 2012;3:301-10. doi: 10.1017/CBO9781107415324.004.
  • [48] Ishii S, Sugavaneshwar RP, Nagao T. Titanium nitride nanoparticles as plasmonic solar heat transducers. The Journal of Physical Chemistry C. 2016 Feb 4;120(4):2343-8. doi: 10.1021/acs.jpcc.5b09604.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

K.b. Deshmukh Bu kişi benim 0000-0002-3131-9175

S.v. Karmare Bu kişi benim 0000-0002-3131-9175

Yayımlanma Tarihi 1 Temmuz 2021
Gönderilme Tarihi 16 Kasım 2019
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 5

Kaynak Göster

APA Deshmukh, K., & Karmare, S. (2021). A review on convective heat augmentation techniques in solar thermal collector using nanofluid. Journal of Thermal Engineering, 7(5), 1257-1266. https://doi.org/10.18186/thermal.978064
AMA Deshmukh K, Karmare S. A review on convective heat augmentation techniques in solar thermal collector using nanofluid. Journal of Thermal Engineering. Temmuz 2021;7(5):1257-1266. doi:10.18186/thermal.978064
Chicago Deshmukh, K.b., ve S.v. Karmare. “A Review on Convective Heat Augmentation Techniques in Solar Thermal Collector Using Nanofluid”. Journal of Thermal Engineering 7, sy. 5 (Temmuz 2021): 1257-66. https://doi.org/10.18186/thermal.978064.
EndNote Deshmukh K, Karmare S (01 Temmuz 2021) A review on convective heat augmentation techniques in solar thermal collector using nanofluid. Journal of Thermal Engineering 7 5 1257–1266.
IEEE K. Deshmukh ve S. Karmare, “A review on convective heat augmentation techniques in solar thermal collector using nanofluid”, Journal of Thermal Engineering, c. 7, sy. 5, ss. 1257–1266, 2021, doi: 10.18186/thermal.978064.
ISNAD Deshmukh, K.b. - Karmare, S.v. “A Review on Convective Heat Augmentation Techniques in Solar Thermal Collector Using Nanofluid”. Journal of Thermal Engineering 7/5 (Temmuz 2021), 1257-1266. https://doi.org/10.18186/thermal.978064.
JAMA Deshmukh K, Karmare S. A review on convective heat augmentation techniques in solar thermal collector using nanofluid. Journal of Thermal Engineering. 2021;7:1257–1266.
MLA Deshmukh, K.b. ve S.v. Karmare. “A Review on Convective Heat Augmentation Techniques in Solar Thermal Collector Using Nanofluid”. Journal of Thermal Engineering, c. 7, sy. 5, 2021, ss. 1257-66, doi:10.18186/thermal.978064.
Vancouver Deshmukh K, Karmare S. A review on convective heat augmentation techniques in solar thermal collector using nanofluid. Journal of Thermal Engineering. 2021;7(5):1257-66.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering