Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 207 - 218, 31.01.2024
https://doi.org/10.18186/thermal.1429961

Abstract

References

  • REFERENCES
  • [1] Xiaowu W, Yong T, Ping C. Investigation into performance of a heat pipe with micro grooves fabricated by extrusion-ploughing process. Energy Convers Manag 2009;50:13841388. [CrossRef]
  • [2] Al-damook A, Azzawi IDJ. The thermohydraulic characteristics and optimization study of radial porous heat sinks using multi-objective computational method. J Heat Transf 2021;143:8. [CrossRef]
  • [3] Ali SK, Azzawi IDJ, Khadom AA. Experimental validation and numerical investigation for optimization and evaluation of heat transfer enhancement in double coil heat exchanger. Thermal Sci Eng Prog 2021;22:100862. [CrossRef]
  • [4] Faraj AF, Azzawi IDJ, Yahya SG. Pitch variations study on helically coiled pipe in turbulent flow region using CFD. Int J Heat Technol. 2020;38:775784. [CrossRef]
  • [5] Faraj AFF, Azzawi IDJ, Yahya SG, Al-Damook A. Computational fluid dynamics investigation of pitch variations on helically coiled pipe in laminar flow region. J Heat Transf 2020;142:10. [CrossRef]
  • [6] Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 2010;53:21832192. [CrossRef]
  • [7] Boukhanouf R, Haddad A. Simulation and experimental investigation of thermal performance of a miniature flat plate heat pipe. Adv Mech Eng 2013;2013. [CrossRef]
  • [8] Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981. [CrossRef]
  • [9] Al-damook A, Alfellag MA, Khalil WH. Three-dimensional computational comparison of mini pinned heat sinks using different nanofluids: Part one—the hydraulic-thermal characteristics. Heat Transf Asian Res 2019;49:591613. [CrossRef]
  • [10] Al‐damook A, Alfellag MA, Khalil WH. Three‐dimensional computational comparison of mini‐pinned heat sinks using different nanofluids: Part two—energy and exergy characteristics. Heat Transf Asian Res 2020;49:441460. [CrossRef]
  • [11] Khrustlev D, Faghri A. Coupled liquid and vapor flow in miniature passages with micro grooves. J Heat Transf 1999;121:729733. [CrossRef]
  • [12] Qu W, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model. Int J Heat Mass Transf. 2003;46:27732784. [CrossRef]
  • [13] Steinke ME, Kandlikar SG. An experimental investigation of flow boiling characteristics of water in parallel microchannels. Trans ASME. 2004;126. [CrossRef]
  • [14] Launay S, Sartre V, Lallemand M. Hydrodynamic and thermal study of a water-filled micro heat pipe array. J Thermophys Heat Transf 2004;18:358363. [CrossRef]
  • [15] Saitoh S, Daiguji H, Hihara E. Effect of tube diameter on boiling heat transfer of R134a in horizontal small-diameter tubes. Int J Heat Mass Transf 2005;48:49734984. [CrossRef]
  • [16] Do KH, Kim SJ, Garimella SV. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 2008;51:46374650. [CrossRef]
  • [17] Bertsch SS, Groll EA, Garimella SV. Effect of heat, mass flux, vapour quality, and saturation temperature on flow boiling heat transfer in microchannels. Int J Multiphase Flow 2009;35:142154. [CrossRef]
  • [18] Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 2010;53:21832192. [CrossRef]
  • [19] Fadhil AM, Khalil WH, Al‐damook A. The hydraulic‐thermal performance of miniature compact heat sinks using SiO2‐water nanofluids. Heat Transf Asian Res 2019;48:31013114. [CrossRef]
  • [20] Fadhil AM, Khalil WH, Al‐damook A, Ahmadi MH, Ghalandari M, Yusaf T. Numerical investigation of hydraulic‐thermal performance and entropy generation of compact heat sinks with SiO2‐ water nanofluids. Math Methods Appl Sci 2020. [CrossRef]
  • [21] Szczukiewicz S, Borhani N, Thome JR. Two-phase heat transfer and high-speed visualization of refrigerant flows in 100x100 μm2 silicon multi-microchannels. Int J Refrigeration 2013;36:402413. [CrossRef]
  • [22] Leão HLLS, Do Nascimento FJ, Ribatski G. Flow boiling heat transfer of R407C in a microchannels based heat spreader. J Exp Thermal Fluid Sci 2014;59:140151. [CrossRef]
  • [23] Wang HJ, Tsai HC, Chen HK, Shing TK. Capillarity of rectangular micro grooves and their application to heat pipes. Tamkang J Sci Eng 2005;8:249255.
  • [24] Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng 1953;75:38.
  • [25] Mohammed K, Saleem A, Obaid ZH. Numerical investigation of Nusselt number for nanofluids flow in an inclined cylinder. Front Heat Mass Transf 2021;16. [CrossRef]

Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves

Year 2024, Volume: 10 Issue: 1, 207 - 218, 31.01.2024
https://doi.org/10.18186/thermal.1429961

Abstract

In the present study, the convective heat transfer coefficient of water in a laminar flow regime under constant inlet temperature conditions inside a flat mini heat pipe was investigated ex-perimentally. Heat flux ranged from 20-50W and various horizontal heat sink temperatures (operating temperature) ranged from 15-35°C with liquid flow rate (3.563E-8 m3/sec) used during the experiments. The rectangular microchannels performance is evaluated in terms of the temperature profile, heat transfer coefficient, Nusselt number and thermal resistance. The results emphasized that the mini heat pipe temperature gradients are less than the tempera-ture of the copper plate and the heat resistance gradually decreases to its lowest value when the heat flux value reaches its highest value if it does not exceed the capillary limits. The data also demonstrated that the coefficient of heat transfer in the condensation zone is lower than in the evaporation zone at different heat sink temperatures. The augmentation rate for the flat mini heat pipe thermal conductivity reached about 240% at a heat load 30W for the positions of thermosyphon and horizontal, while the rate of increase in the case of the anti-gravity situ-ation at a heat load 30W reaches 210%, then the improvement percentage begins to decrease to 200%. A generalized regression equation is developed for the estimation of the Nusselt number valid for water in a flat mini heat pipe.

References

  • REFERENCES
  • [1] Xiaowu W, Yong T, Ping C. Investigation into performance of a heat pipe with micro grooves fabricated by extrusion-ploughing process. Energy Convers Manag 2009;50:13841388. [CrossRef]
  • [2] Al-damook A, Azzawi IDJ. The thermohydraulic characteristics and optimization study of radial porous heat sinks using multi-objective computational method. J Heat Transf 2021;143:8. [CrossRef]
  • [3] Ali SK, Azzawi IDJ, Khadom AA. Experimental validation and numerical investigation for optimization and evaluation of heat transfer enhancement in double coil heat exchanger. Thermal Sci Eng Prog 2021;22:100862. [CrossRef]
  • [4] Faraj AF, Azzawi IDJ, Yahya SG. Pitch variations study on helically coiled pipe in turbulent flow region using CFD. Int J Heat Technol. 2020;38:775784. [CrossRef]
  • [5] Faraj AFF, Azzawi IDJ, Yahya SG, Al-Damook A. Computational fluid dynamics investigation of pitch variations on helically coiled pipe in laminar flow region. J Heat Transf 2020;142:10. [CrossRef]
  • [6] Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 2010;53:21832192. [CrossRef]
  • [7] Boukhanouf R, Haddad A. Simulation and experimental investigation of thermal performance of a miniature flat plate heat pipe. Adv Mech Eng 2013;2013. [CrossRef]
  • [8] Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981. [CrossRef]
  • [9] Al-damook A, Alfellag MA, Khalil WH. Three-dimensional computational comparison of mini pinned heat sinks using different nanofluids: Part one—the hydraulic-thermal characteristics. Heat Transf Asian Res 2019;49:591613. [CrossRef]
  • [10] Al‐damook A, Alfellag MA, Khalil WH. Three‐dimensional computational comparison of mini‐pinned heat sinks using different nanofluids: Part two—energy and exergy characteristics. Heat Transf Asian Res 2020;49:441460. [CrossRef]
  • [11] Khrustlev D, Faghri A. Coupled liquid and vapor flow in miniature passages with micro grooves. J Heat Transf 1999;121:729733. [CrossRef]
  • [12] Qu W, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model. Int J Heat Mass Transf. 2003;46:27732784. [CrossRef]
  • [13] Steinke ME, Kandlikar SG. An experimental investigation of flow boiling characteristics of water in parallel microchannels. Trans ASME. 2004;126. [CrossRef]
  • [14] Launay S, Sartre V, Lallemand M. Hydrodynamic and thermal study of a water-filled micro heat pipe array. J Thermophys Heat Transf 2004;18:358363. [CrossRef]
  • [15] Saitoh S, Daiguji H, Hihara E. Effect of tube diameter on boiling heat transfer of R134a in horizontal small-diameter tubes. Int J Heat Mass Transf 2005;48:49734984. [CrossRef]
  • [16] Do KH, Kim SJ, Garimella SV. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 2008;51:46374650. [CrossRef]
  • [17] Bertsch SS, Groll EA, Garimella SV. Effect of heat, mass flux, vapour quality, and saturation temperature on flow boiling heat transfer in microchannels. Int J Multiphase Flow 2009;35:142154. [CrossRef]
  • [18] Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 2010;53:21832192. [CrossRef]
  • [19] Fadhil AM, Khalil WH, Al‐damook A. The hydraulic‐thermal performance of miniature compact heat sinks using SiO2‐water nanofluids. Heat Transf Asian Res 2019;48:31013114. [CrossRef]
  • [20] Fadhil AM, Khalil WH, Al‐damook A, Ahmadi MH, Ghalandari M, Yusaf T. Numerical investigation of hydraulic‐thermal performance and entropy generation of compact heat sinks with SiO2‐ water nanofluids. Math Methods Appl Sci 2020. [CrossRef]
  • [21] Szczukiewicz S, Borhani N, Thome JR. Two-phase heat transfer and high-speed visualization of refrigerant flows in 100x100 μm2 silicon multi-microchannels. Int J Refrigeration 2013;36:402413. [CrossRef]
  • [22] Leão HLLS, Do Nascimento FJ, Ribatski G. Flow boiling heat transfer of R407C in a microchannels based heat spreader. J Exp Thermal Fluid Sci 2014;59:140151. [CrossRef]
  • [23] Wang HJ, Tsai HC, Chen HK, Shing TK. Capillarity of rectangular micro grooves and their application to heat pipes. Tamkang J Sci Eng 2005;8:249255.
  • [24] Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng 1953;75:38.
  • [25] Mohammed K, Saleem A, Obaid ZH. Numerical investigation of Nusselt number for nanofluids flow in an inclined cylinder. Front Heat Mass Transf 2021;16. [CrossRef]
There are 26 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Bassim Mohammed Majel This is me 0000-0002-4803-0749

Zain Alabdeen Hussein Obaıd This is me 0000-0002-6674-5035

Publication Date January 31, 2024
Submission Date May 25, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Majel, B. M., & Obaıd, Z. A. H. (2024). Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves. Journal of Thermal Engineering, 10(1), 207-218. https://doi.org/10.18186/thermal.1429961
AMA Majel BM, Obaıd ZAH. Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves. Journal of Thermal Engineering. January 2024;10(1):207-218. doi:10.18186/thermal.1429961
Chicago Majel, Bassim Mohammed, and Zain Alabdeen Hussein Obaıd. “Experimental Investigation of Forced Convective Heat Transfer and Fluid Flow in a Mini Heat Pipe With Rectangular Micro Grooves”. Journal of Thermal Engineering 10, no. 1 (January 2024): 207-18. https://doi.org/10.18186/thermal.1429961.
EndNote Majel BM, Obaıd ZAH (January 1, 2024) Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves. Journal of Thermal Engineering 10 1 207–218.
IEEE B. M. Majel and Z. A. H. Obaıd, “Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 207–218, 2024, doi: 10.18186/thermal.1429961.
ISNAD Majel, Bassim Mohammed - Obaıd, Zain Alabdeen Hussein. “Experimental Investigation of Forced Convective Heat Transfer and Fluid Flow in a Mini Heat Pipe With Rectangular Micro Grooves”. Journal of Thermal Engineering 10/1 (January 2024), 207-218. https://doi.org/10.18186/thermal.1429961.
JAMA Majel BM, Obaıd ZAH. Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves. Journal of Thermal Engineering. 2024;10:207–218.
MLA Majel, Bassim Mohammed and Zain Alabdeen Hussein Obaıd. “Experimental Investigation of Forced Convective Heat Transfer and Fluid Flow in a Mini Heat Pipe With Rectangular Micro Grooves”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 207-18, doi:10.18186/thermal.1429961.
Vancouver Majel BM, Obaıd ZAH. Experimental investigation of forced convective heat transfer and fluid flow in a mini heat pipe with rectangular micro grooves. Journal of Thermal Engineering. 2024;10(1):207-18.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering