Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 1, 219 - 243, 31.01.2024
https://doi.org/10.18186/thermal.1429974

Abstract

References

  • REFERENCES
  • [1] Schuster A, Karellas S, Kakaras E, Spliethoff H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl Thermal Eng 2009;29:18091817. [CrossRef]
  • [2] Lolos PA, Rogdakis ED. A Kalina power cycle driven by renewable energy sources. Energy 2009;34:457464. [CrossRef]
  • [3] Upadhyaya S, Gumtapure V. Parametric investigation of open-drive scroll expander for micro Organic Rankine Cycle applications. J Thermal Eng 2021;7:111011120. [CrossRef]
  • [4] Quoilin S, Van Den Broek M, Declaye S, Dewallef P, Lemort V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev 2013;22:168186. [CrossRef]
  • [5] Bao J, Zhao L. A review of working fluid and expander selections for organic rankine cycle. Renew Sustain Energy Rev 2013;24:325342. [CrossRef]
  • [6] Reddy PK, Bhagyashekar MS. Experimental testing of scroll machine driven by compressed air for power generation and its integration in small scale organic Rankine Cycle. J Thermal Eng 2021;7:14571467. [CrossRef]
  • [7] Ozdemir E, Kilic M. Thermodynamic analysis of basic and regenerative Organic Rankine Cycles using dry fluids from water heat recovery. J Thermal Eng 2018;4:23812393. [CrossRef]
  • [8] Xu J, Yu C. Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine Cycles. Energy 2014;74:719733. [CrossRef]
  • [9] Jankowski M, Borsukiewicz A. Multi-objective approach for determination of optimal operating parameters in low-temperature ORC power plant. Energy Convers Manag 2019;200:112075. [CrossRef]
  • [10] Mohammadi H, Mohammadi M. Optimization of the micro combined heat and power systems considering objective functions, components and operation strategies by an integrated approach. Energy Convers Manag 2020;208:112610. [CrossRef]
  • [11] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliab Eng Syst Saf 2006;91:9921007. [CrossRef]
  • [12] Rahbar K, Mahmoud S, AL-Dadah RK, Moazami N. Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle. Energy 2015;83:696711. [CrossRef]
  • [13] Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers Manag 2014;87:107118. [CrossRef]
  • [14] Wei D, Lu X, Lu Z, Gu J. Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery. Energy Convers Manag 2007;48:11131119. [CrossRef]
  • [15] Jankowski M, Borsukiewicz A, Szopik-Depczyńska K, Ioppolo G. Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach. J
  • Clean Prod 2019;217:798807. [CrossRef]
  • [16] Sani MM, Noorpoor A, Motlagh MS. Multi-objective optimization of waster heat recovery in cement industry (a case study). J Therm Eng 2020;6:604618. [CrossRef]
  • [17] Bademlioglu AH, Canbolat AS, Kaynakli O. Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey relational analysis. Renew Sustain Energy Rev 2020;117:109483. [CrossRef]
  • [18] Choi HW, Na S-I, Hong SB, Chung Y, Kim DK, Kim MS. Optimal design of Organic Rankine Cycle recovering LNG cold energy with finite heat exchanger size. Energy 2021;217:119268. [CrossRef]
  • [19] Wang D, Ma Y, Tian R, Duan J, Hu B, Shi L. Thermodynamic evaluation of an ORC system with a low pressure saturated steam heat source. Energy 2018;149:375385. [CrossRef]
  • [20] Karellas S, Schuster A. Supercritical fluid parameters in organic rankine cycle applications. Int J Thermodyn 2008;11:101108.
  • [21] Qiu G. Selection of working fluids for micro-CHP systems with ORC. Renew Energy 2012;48:565570. [CrossRef]
  • [22] Drescher U, Bruggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl Therm Eng 2007;27:223228. [CrossRef]
  • [23] Akkaya AV. Performance analyzing of an Organic Rankine Cycle under different ambient conditions. J Therm Eng 2017;3:14981504. [CrossRef]
  • [24] Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. 5th ed. John Wiley & Sons; 2006.
  • [25] Desai NB, Bandyopadhyay S. Process integration of Organic Rankine Cycle. Energy 2009;34:16741686. [CrossRef]
  • [26] Jumel S, Le-Van L, Feidt M, Kheiri A. Working fluid selection and performance comparison of subcritical and supercritical Organic Rankine Cycle (ORC) for low-temperature waste heat recovery. ECEEE 2012 Summer Study on Energy Efficiency in Industry.
  • [27] Tchanche BF, Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renew Sustain Energy Rev 2011;15:39633979. [CrossRef]
  • [28] Liu X, Zhang Y, Shen J. System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures. Geothermics 2017;66:134142. [CrossRef]
  • [29] Wang R, Jiang L, Ma Z, Gonzalez-Diaz A, Wang Y, Roskilly AP. Comparative analysis of small-scale organic rankine cycle systems for solar energy utilisation. Energies 2019;12:829. [CrossRef]
  • [30] Mudasar R, Aziz F, Kim MH. Thermodynamic analysis of Organic Rankine Cycle used for flue gases from biogas combustion. Energy Convers Manag 2017;153:627640. [CrossRef]
  • [31] Chen Q, Xu J, Chen H. A new design method for organic rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source. Appl Energy 2012;98:562573. [CrossRef]
  • [32] Incropera F, Incropera FP, DeWitt DP, Bergman TL. Fundamentals of heat and mass transfer. 6th ed. New York: John Wiley & Sons; 2007. [33] Wang J, Diao M, Yue K. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method. Energy 2017;141:97107. [CrossRef]
  • [34] Han Z, Li P, Han X, Mei Z, Wang Z. Thermo-economic Performance analysis of a regenerative superheating Organic Rankine Cycle for waste heat recovery. Energies 2017;10:1593. [CrossRef]
  • [35] Oyewunmi OA, Kirmse C, Markides CN. Performance of working-fluid mixtures in ORC-CHP systems for different heat-demand segments and heat-recovery temperature levels. Energy Convers Manag 2017;148:15081524. [CrossRef]
  • [36] Shu G, Liu L, Tian H, Wei H, Yu G. Parametric and working fluid analysis of a dual-loop Organic Rankine Cycle (DORC) used in engine waste heat recovery. Appl Energy 2014;113:11881198. [CrossRef]
  • [37] Kang Z, Zhu J, Lu X, Li T, Wu X. Parametric optimization and performance analysis of zeotropic mixtures for an Organic Rankine Cycle driven by low-medium temperature geothermal fluids. Appl Therm Eng 2015;89:323339. [CrossRef]
  • [38] Official Journal of the European Parliament. Directive 2004/8EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC.
  • [39] Kanoglu M, Dincer I. Performance assessment of cogeneration plants. Energy Convers Manag 2009;50:7681. [CrossRef]
  • [40] Nesheim SJ, Ertesvag IS. Efficiencies and indicators defined to promote Combined Heat and Power. Energy Convers Manag 2007;48:10041015. [CrossRef]
  • [41] Qiu G, Shao Y, Li J, Liu H, Riffat SB. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012;96:374382. [CrossRef]
  • [42] Zhu Y, Li W, Li J, Li H, Wang Y, Li S. Thermodynamic analysis and economic assessment of biomass-fired Organic Rankine Cycle Combined Heat and Power system integrated with CO2 capture. Energy Convers Manag 2020;204:112310. [CrossRef]
  • [43] Sarkar J. Generalized pinch point design method of subcritical-supercritical Organic Rankine Cycle for maximum heat recovery. Energy 2018;143:141150. [CrossRef]
  • [44] Kim KH, Ko HJ, Kim K. Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles. Appl Energy 2014;113:970981. [CrossRef]
  • [45] Khan TS, Khan MS, Chyu M-C, Ayub ZH. Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger. Int J Refrig 2012;35:336348. [CrossRef]
  • [46] Thulukkanam K. Heat exchanger design handbook. 2nd ed. Boca Raton, USA: CRC Press; 2013. [CrossRef]
  • [47] Kakac S, Liu H. Heat exchangers. Selection, rating and thermal design. 2nd edition. Boca Raton, USA: CRC Press; 2002.
  • [48] Dovic D, Palm B, Svaic S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. Int J Heat Mass Transf 2009;52:45334563. [CrossRef]
  • [49] Sagia A, Sagia Z. Heat Transfer I. National Technical University of Athens; 2018, Athens, Greece.
  • [50] Zhang J, Zhu X, Mondejar ME, Haglind F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew Sustain Energy Rev 2019;101:305328. [CrossRef]
  • [51] Ayub ZH. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf Eng 2003;24:316. [CrossRef]
  • [52] Garcia-Cascales JR, Vera-García F, Corberán-Salvador JM, Gonzálvez-Maciá J. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. Int J Refrig 2007;30:10291041. [CrossRef]
  • [53] Junqi D, Xianhui Z, Jianhang W. Experimental investigation on heat transfer characteristics of plat heat exchanger applied in Organic Rankine Cycle (ORC). Appl Therm Eng 2017;112:11371152. [CrossRef]
  • [54] Imran M, Pili R, Usman M, Haglind F. Dynamic modeling and control strategies of Organic Rankine Cycle systems: methods and challenges. Appl Energy 2020;115537. [CrossRef]
  • [55] Kim YS. An experimental study on evaporation heat transfer characteristics and pressure drop in plate heat exchanger. [Master thesis], Seoul, South Korea: Yonsei University; 1999. [CrossRef]
  • [56] Forooghi P, Hooman K. Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers. Int J Heat Mass Transf 2014;74:448459. [CrossRef]
  • [57] Harmen, Adriansyah W, Abdurrachim, Darmawan Pasek A. Theoretical investigation of heat transfer correlations for supercritical organic fluids. AIP Conf Proceed 2018;1984:020011. [CrossRef]
  • [58] Karellas S, Schuster A, Leontaritis AD. Influence of supercritical ORC parameters on plate heat exchanger design. Appl Thermal Eng 2012;33-34:7076. [CrossRef]
  • [59] Kruizenga A, Li H, Anderson M, Corradini M. Supercritical carbon dioxide heat transfer in horizontal semicircular channels. J Heat Transf 2012;134:081802. [CrossRef]
  • [60] Han DH, Lee KJ, Kim YH. The characteristics of condensation in brazed plate heat exchangers with different chevron angles. J Korean Phys Soc 2003;43:6673. [61] Buonopane RA, Troupe RA, Morgan JC. Heat transfer design method for plate heat exchangers. Chem Eng Prog 1963;59:5761.
  • [62] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, Massachusetts, USA: Addison-Wesley Publishing Company; 1989,
  • [63] Gen M, Cheng R. Genetic Algorithms and Engineering Design. West Sussex, England: John Wiley & Sons; 1997
  • [64] Hassanat A, Hassanat A, Almohammadi K, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Surya Prasath VB. Choosing mutation and crossover ratios for genetic algorithms-A review with a new dynamic approach. Information 2019;10:390. [CrossRef]
  • [65] Marler RT, Arora JS. Function-transformation methods for multi-objective optimization. Eng Optimization 2005;36:551570. [CrossRef]
  • [66] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Eng System Safety 2006;91:9921007. [CrossRef]
  • [67] Telmo C, Lousada J. Heating values of wood pellets from different species. Biomass Bioenergy. 2011;35:26342639. [CrossRef]
  • [68] Bell I, Wronski J, Quoilin S, Lemort V.nPure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 2014;53:24982508. [CrossRef]
  • [69] Dow Chemical. Dowtherm Q Technical Data Sheet. Last Accessed Date: 23.12.2023. Available at: https://www.dow.com/en-us/pdp.dowtherm-q-heat-transfer-fluid.11233z.html#overview
  • [70] National Center for Biotechnology Information. U. S. National Library of Medicine. Last Accessed Date: 23.12.2023. Pubchem. Available at: https://pubchem.ncbi.nlm.nih.gov/

Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions

Year 2024, Volume: 10 Issue: 1, 219 - 243, 31.01.2024
https://doi.org/10.18186/thermal.1429974

Abstract

ORC cycle is one of the most efficient technologies for the utilization of low-grade heat. ORC systems cover a wide range of heat sources and power outputs. Apart from increasing the overall efficiency, CHP systems contribute to the decentralization of energy production, the conservation of primary fuel, the reduction of the emission of greenhouse gasses and the re-duction of the cost to the final consumer. This justifies the research activity around CHP-ORC
systems. In the present paper, a steady-state thermodynamic model for a 50 kWel biomass microCHP-ORC was developed and four candidate fluids were selected: R124, isobutane, R245fa and isopentane. The multi-objective optimization under supercritical conditions was performed using the genetic algorithm. The thermal efficiency, the exergy efficiency and the total heat exchanger surface were selected as single objectives. The evaporation temperature and pressure and the pinch point temperature differences at the heat exchangers were selected as decision variables. Careful examination of the optimal results revealed a systematic ten-dency for high evaporation temperatures and pressures and low recuperator pinch point tem-perature differences. Recuperation was found beneficial in many aspects, especially at higher evaporation temperatures. Also, the use of cogeneration leads to overall system efficiencies that surpass 90%, while simultaneously saving at least 20% fuel. Lastly, isopentane was found to be the best-performing fluid.

References

  • REFERENCES
  • [1] Schuster A, Karellas S, Kakaras E, Spliethoff H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl Thermal Eng 2009;29:18091817. [CrossRef]
  • [2] Lolos PA, Rogdakis ED. A Kalina power cycle driven by renewable energy sources. Energy 2009;34:457464. [CrossRef]
  • [3] Upadhyaya S, Gumtapure V. Parametric investigation of open-drive scroll expander for micro Organic Rankine Cycle applications. J Thermal Eng 2021;7:111011120. [CrossRef]
  • [4] Quoilin S, Van Den Broek M, Declaye S, Dewallef P, Lemort V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev 2013;22:168186. [CrossRef]
  • [5] Bao J, Zhao L. A review of working fluid and expander selections for organic rankine cycle. Renew Sustain Energy Rev 2013;24:325342. [CrossRef]
  • [6] Reddy PK, Bhagyashekar MS. Experimental testing of scroll machine driven by compressed air for power generation and its integration in small scale organic Rankine Cycle. J Thermal Eng 2021;7:14571467. [CrossRef]
  • [7] Ozdemir E, Kilic M. Thermodynamic analysis of basic and regenerative Organic Rankine Cycles using dry fluids from water heat recovery. J Thermal Eng 2018;4:23812393. [CrossRef]
  • [8] Xu J, Yu C. Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine Cycles. Energy 2014;74:719733. [CrossRef]
  • [9] Jankowski M, Borsukiewicz A. Multi-objective approach for determination of optimal operating parameters in low-temperature ORC power plant. Energy Convers Manag 2019;200:112075. [CrossRef]
  • [10] Mohammadi H, Mohammadi M. Optimization of the micro combined heat and power systems considering objective functions, components and operation strategies by an integrated approach. Energy Convers Manag 2020;208:112610. [CrossRef]
  • [11] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliab Eng Syst Saf 2006;91:9921007. [CrossRef]
  • [12] Rahbar K, Mahmoud S, AL-Dadah RK, Moazami N. Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle. Energy 2015;83:696711. [CrossRef]
  • [13] Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers Manag 2014;87:107118. [CrossRef]
  • [14] Wei D, Lu X, Lu Z, Gu J. Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery. Energy Convers Manag 2007;48:11131119. [CrossRef]
  • [15] Jankowski M, Borsukiewicz A, Szopik-Depczyńska K, Ioppolo G. Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach. J
  • Clean Prod 2019;217:798807. [CrossRef]
  • [16] Sani MM, Noorpoor A, Motlagh MS. Multi-objective optimization of waster heat recovery in cement industry (a case study). J Therm Eng 2020;6:604618. [CrossRef]
  • [17] Bademlioglu AH, Canbolat AS, Kaynakli O. Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey relational analysis. Renew Sustain Energy Rev 2020;117:109483. [CrossRef]
  • [18] Choi HW, Na S-I, Hong SB, Chung Y, Kim DK, Kim MS. Optimal design of Organic Rankine Cycle recovering LNG cold energy with finite heat exchanger size. Energy 2021;217:119268. [CrossRef]
  • [19] Wang D, Ma Y, Tian R, Duan J, Hu B, Shi L. Thermodynamic evaluation of an ORC system with a low pressure saturated steam heat source. Energy 2018;149:375385. [CrossRef]
  • [20] Karellas S, Schuster A. Supercritical fluid parameters in organic rankine cycle applications. Int J Thermodyn 2008;11:101108.
  • [21] Qiu G. Selection of working fluids for micro-CHP systems with ORC. Renew Energy 2012;48:565570. [CrossRef]
  • [22] Drescher U, Bruggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl Therm Eng 2007;27:223228. [CrossRef]
  • [23] Akkaya AV. Performance analyzing of an Organic Rankine Cycle under different ambient conditions. J Therm Eng 2017;3:14981504. [CrossRef]
  • [24] Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. 5th ed. John Wiley & Sons; 2006.
  • [25] Desai NB, Bandyopadhyay S. Process integration of Organic Rankine Cycle. Energy 2009;34:16741686. [CrossRef]
  • [26] Jumel S, Le-Van L, Feidt M, Kheiri A. Working fluid selection and performance comparison of subcritical and supercritical Organic Rankine Cycle (ORC) for low-temperature waste heat recovery. ECEEE 2012 Summer Study on Energy Efficiency in Industry.
  • [27] Tchanche BF, Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renew Sustain Energy Rev 2011;15:39633979. [CrossRef]
  • [28] Liu X, Zhang Y, Shen J. System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures. Geothermics 2017;66:134142. [CrossRef]
  • [29] Wang R, Jiang L, Ma Z, Gonzalez-Diaz A, Wang Y, Roskilly AP. Comparative analysis of small-scale organic rankine cycle systems for solar energy utilisation. Energies 2019;12:829. [CrossRef]
  • [30] Mudasar R, Aziz F, Kim MH. Thermodynamic analysis of Organic Rankine Cycle used for flue gases from biogas combustion. Energy Convers Manag 2017;153:627640. [CrossRef]
  • [31] Chen Q, Xu J, Chen H. A new design method for organic rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source. Appl Energy 2012;98:562573. [CrossRef]
  • [32] Incropera F, Incropera FP, DeWitt DP, Bergman TL. Fundamentals of heat and mass transfer. 6th ed. New York: John Wiley & Sons; 2007. [33] Wang J, Diao M, Yue K. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method. Energy 2017;141:97107. [CrossRef]
  • [34] Han Z, Li P, Han X, Mei Z, Wang Z. Thermo-economic Performance analysis of a regenerative superheating Organic Rankine Cycle for waste heat recovery. Energies 2017;10:1593. [CrossRef]
  • [35] Oyewunmi OA, Kirmse C, Markides CN. Performance of working-fluid mixtures in ORC-CHP systems for different heat-demand segments and heat-recovery temperature levels. Energy Convers Manag 2017;148:15081524. [CrossRef]
  • [36] Shu G, Liu L, Tian H, Wei H, Yu G. Parametric and working fluid analysis of a dual-loop Organic Rankine Cycle (DORC) used in engine waste heat recovery. Appl Energy 2014;113:11881198. [CrossRef]
  • [37] Kang Z, Zhu J, Lu X, Li T, Wu X. Parametric optimization and performance analysis of zeotropic mixtures for an Organic Rankine Cycle driven by low-medium temperature geothermal fluids. Appl Therm Eng 2015;89:323339. [CrossRef]
  • [38] Official Journal of the European Parliament. Directive 2004/8EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC.
  • [39] Kanoglu M, Dincer I. Performance assessment of cogeneration plants. Energy Convers Manag 2009;50:7681. [CrossRef]
  • [40] Nesheim SJ, Ertesvag IS. Efficiencies and indicators defined to promote Combined Heat and Power. Energy Convers Manag 2007;48:10041015. [CrossRef]
  • [41] Qiu G, Shao Y, Li J, Liu H, Riffat SB. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 2012;96:374382. [CrossRef]
  • [42] Zhu Y, Li W, Li J, Li H, Wang Y, Li S. Thermodynamic analysis and economic assessment of biomass-fired Organic Rankine Cycle Combined Heat and Power system integrated with CO2 capture. Energy Convers Manag 2020;204:112310. [CrossRef]
  • [43] Sarkar J. Generalized pinch point design method of subcritical-supercritical Organic Rankine Cycle for maximum heat recovery. Energy 2018;143:141150. [CrossRef]
  • [44] Kim KH, Ko HJ, Kim K. Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles. Appl Energy 2014;113:970981. [CrossRef]
  • [45] Khan TS, Khan MS, Chyu M-C, Ayub ZH. Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger. Int J Refrig 2012;35:336348. [CrossRef]
  • [46] Thulukkanam K. Heat exchanger design handbook. 2nd ed. Boca Raton, USA: CRC Press; 2013. [CrossRef]
  • [47] Kakac S, Liu H. Heat exchangers. Selection, rating and thermal design. 2nd edition. Boca Raton, USA: CRC Press; 2002.
  • [48] Dovic D, Palm B, Svaic S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. Int J Heat Mass Transf 2009;52:45334563. [CrossRef]
  • [49] Sagia A, Sagia Z. Heat Transfer I. National Technical University of Athens; 2018, Athens, Greece.
  • [50] Zhang J, Zhu X, Mondejar ME, Haglind F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew Sustain Energy Rev 2019;101:305328. [CrossRef]
  • [51] Ayub ZH. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf Eng 2003;24:316. [CrossRef]
  • [52] Garcia-Cascales JR, Vera-García F, Corberán-Salvador JM, Gonzálvez-Maciá J. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. Int J Refrig 2007;30:10291041. [CrossRef]
  • [53] Junqi D, Xianhui Z, Jianhang W. Experimental investigation on heat transfer characteristics of plat heat exchanger applied in Organic Rankine Cycle (ORC). Appl Therm Eng 2017;112:11371152. [CrossRef]
  • [54] Imran M, Pili R, Usman M, Haglind F. Dynamic modeling and control strategies of Organic Rankine Cycle systems: methods and challenges. Appl Energy 2020;115537. [CrossRef]
  • [55] Kim YS. An experimental study on evaporation heat transfer characteristics and pressure drop in plate heat exchanger. [Master thesis], Seoul, South Korea: Yonsei University; 1999. [CrossRef]
  • [56] Forooghi P, Hooman K. Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers. Int J Heat Mass Transf 2014;74:448459. [CrossRef]
  • [57] Harmen, Adriansyah W, Abdurrachim, Darmawan Pasek A. Theoretical investigation of heat transfer correlations for supercritical organic fluids. AIP Conf Proceed 2018;1984:020011. [CrossRef]
  • [58] Karellas S, Schuster A, Leontaritis AD. Influence of supercritical ORC parameters on plate heat exchanger design. Appl Thermal Eng 2012;33-34:7076. [CrossRef]
  • [59] Kruizenga A, Li H, Anderson M, Corradini M. Supercritical carbon dioxide heat transfer in horizontal semicircular channels. J Heat Transf 2012;134:081802. [CrossRef]
  • [60] Han DH, Lee KJ, Kim YH. The characteristics of condensation in brazed plate heat exchangers with different chevron angles. J Korean Phys Soc 2003;43:6673. [61] Buonopane RA, Troupe RA, Morgan JC. Heat transfer design method for plate heat exchangers. Chem Eng Prog 1963;59:5761.
  • [62] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, Massachusetts, USA: Addison-Wesley Publishing Company; 1989,
  • [63] Gen M, Cheng R. Genetic Algorithms and Engineering Design. West Sussex, England: John Wiley & Sons; 1997
  • [64] Hassanat A, Hassanat A, Almohammadi K, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Surya Prasath VB. Choosing mutation and crossover ratios for genetic algorithms-A review with a new dynamic approach. Information 2019;10:390. [CrossRef]
  • [65] Marler RT, Arora JS. Function-transformation methods for multi-objective optimization. Eng Optimization 2005;36:551570. [CrossRef]
  • [66] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Eng System Safety 2006;91:9921007. [CrossRef]
  • [67] Telmo C, Lousada J. Heating values of wood pellets from different species. Biomass Bioenergy. 2011;35:26342639. [CrossRef]
  • [68] Bell I, Wronski J, Quoilin S, Lemort V.nPure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 2014;53:24982508. [CrossRef]
  • [69] Dow Chemical. Dowtherm Q Technical Data Sheet. Last Accessed Date: 23.12.2023. Available at: https://www.dow.com/en-us/pdp.dowtherm-q-heat-transfer-fluid.11233z.html#overview
  • [70] National Center for Biotechnology Information. U. S. National Library of Medicine. Last Accessed Date: 23.12.2023. Pubchem. Available at: https://pubchem.ncbi.nlm.nih.gov/
There are 70 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Panagiotis Kladısıos This is me 0009-0003-7690-8349

Athina Sagıa This is me 0000-0002-7881-4528

Publication Date January 31, 2024
Submission Date July 5, 2022
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Kladısıos, P., & Sagıa, A. (2024). Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions. Journal of Thermal Engineering, 10(1), 219-243. https://doi.org/10.18186/thermal.1429974
AMA Kladısıos P, Sagıa A. Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions. Journal of Thermal Engineering. January 2024;10(1):219-243. doi:10.18186/thermal.1429974
Chicago Kladısıos, Panagiotis, and Athina Sagıa. “Multi-Objective Optimization of a Biomass MicroCHP-ORC System under Supercritical Conditions”. Journal of Thermal Engineering 10, no. 1 (January 2024): 219-43. https://doi.org/10.18186/thermal.1429974.
EndNote Kladısıos P, Sagıa A (January 1, 2024) Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions. Journal of Thermal Engineering 10 1 219–243.
IEEE P. Kladısıos and A. Sagıa, “Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions”, Journal of Thermal Engineering, vol. 10, no. 1, pp. 219–243, 2024, doi: 10.18186/thermal.1429974.
ISNAD Kladısıos, Panagiotis - Sagıa, Athina. “Multi-Objective Optimization of a Biomass MicroCHP-ORC System under Supercritical Conditions”. Journal of Thermal Engineering 10/1 (January 2024), 219-243. https://doi.org/10.18186/thermal.1429974.
JAMA Kladısıos P, Sagıa A. Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions. Journal of Thermal Engineering. 2024;10:219–243.
MLA Kladısıos, Panagiotis and Athina Sagıa. “Multi-Objective Optimization of a Biomass MicroCHP-ORC System under Supercritical Conditions”. Journal of Thermal Engineering, vol. 10, no. 1, 2024, pp. 219-43, doi:10.18186/thermal.1429974.
Vancouver Kladısıos P, Sagıa A. Multi-objective optimization of a biomass microCHP-ORC system under supercritical conditions. Journal of Thermal Engineering. 2024;10(1):219-43.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering