Derleme
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 3, 790 - 810, 21.05.2024

Öz

Kaynakça

  • [1] Musgrove G, Wright S. Introduction and Background. In: Klaus B, Peter F, Richard D, editors. Fundamentals and applications of supercritical carbon dioxide (sCO₂) based power cycles. Cambridge: Woodhead Publishing; 2017. p. 1–22. [CrossRef]
  • [2] Linke P, Papadopoulos AI, Seferlis P. Systematic methods for working fluid selection and the design, integration and control of organic Rankine cycles - a review. Energies 2015;8:4755–4801. [CrossRef]
  • [3] Wu P, Ma Y, Gao C, Liu W, Shan J, Huang Y, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications. Nucl Eng Des 2020;368:110767. [CrossRef]
  • [4] Sulaiman MA, Waheed MA, Adewunmi BA, Alamu OJ. Investigating the influence of incorporation of solar aided power generation technology on a steam power plant in Nigeria. Int Energy J 2015;15:167–176.
  • [5] Kumar A, Shukla SK. A Review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 2015;74:462–469. [CrossRef]
  • [6] Jamel MS, Abd Rahman A, Shamsuddin AH. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev 2013;20:71–81. [CrossRef]
  • [7] Paital SR, Ray PK, Mohanty A. Comprehensive review on enhancement of stability in multimachine power system with conventional and distributed generations. IET Renew Power Gener 2018;12:1854–1863. [CrossRef]
  • [8] Phillips J. Evaluating the level and nature of sustainable development for a geothermal power plant. Renew Sustain Energy Rev 2010;14:2414–2425. [CrossRef]
  • [9] Karadas M, Celik HM, Serpen U, Toksoy M. Multiple regression analysis of performance parameters of a binary cycle geothermal power plant. Geothermics 2015;54:68–75. [CrossRef]
  • [10] Zhang X, He M, Zhang Y. A review of research on the Kalina cycle. Renew Sustain Energy Rev 2012;16:5309–5318. [CrossRef]
  • [11] Giovannelli A. State of the art on small-scale concentrated solar power plants. Energy Procedia 2015;82:607–614. [CrossRef]
  • [12] Akorede MF, Hizam H, Pouresmaeil E. Distributed energy resources and benefits to the environment. Renew Sustain Energy Rev 2010;14:724–734. [CrossRef]
  • [13] Chauhan A, Saini RP. A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control. Renew Sustain Energy Rev 2014;38:99–120. [CrossRef]
  • [14] Al-Sulaiman FA. Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles. Energy 2013;58:561–570. [CrossRef]
  • [15] Chen L, Meng Z, Ge Y, Wu F. Performance analysis and optimization for irreversible combined carnot heat engine working with ideal quantum gases. Entropy (Basel) 2021;23:536. [CrossRef]
  • [16] Keshvarparast A, Ajarostaghi SSM, Delavar MA.Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Appl Therm Eng 2020;172:115160. [CrossRef]
  • [17] Olumayegun O, Wang M, Kelsall G. Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel 2016;180:694–717. [CrossRef]
  • [18] Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N, Mirhadizadeh SA. Review of organic Rankine cycle for small-scale applications. Energy Conver Manage 2017;134:135–155. [CrossRef]
  • [19] Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – an overview in organic Rankine cycle. Energy Conver Manage 2018;166:474–488. [CrossRef]
  • [20] Abadi GB, Kim KC. Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: advantages and issues. Renew Sustain Energy Rev 2017;73:1000–1013. [CrossRef]
  • [21] Sarkar J, Bhattacharyya S. Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study. Energy 2015;90:1618–1625. [CrossRef]
  • [22] Wang M, Manera A, Qiu S, Su GH. Ammonia-water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant. Prog Nuclear Energy 2016;91:26–37. [CrossRef]
  • [23] Kalina AI. Combined-cycle system with novel bottoming cycle. J Eng Gas Turbines Power 1984;106:737–742. [CrossRef]
  • [24] Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ. Ammonia for power. Prog Energy Combust Sci 2018;69:63–102. [CrossRef]
  • [25] Kim KH, Han CH, Kim K. Comparative exergy analysis of ammonia-water based Rankine cycles with and without regeneration. Int J Exergy 2013;12:344–361. [CrossRef]
  • [26] Meser M, Veith S, Zimmermann J. Disclosure, enforcement, and capital market properties: a longitudinal analysis for Germany. Schmalenbach Business Rev 2015;16:254–288. [CrossRef]
  • [27] Yuan H, Mei N, Li Y, Yang S, Hu S, Han Y. Theoretical and experimental investigation on a liquid-gas ejector power cycle using ammonia-water. Sci China Technol Sci 2013;56:2289–2298. [CrossRef]
  • [28] Junye H, Yaping C, Jiafeng W. Thermal performance of a modified ammonia-water power cycle for reclaiming mid/low-grade waste heat. Energy Conver Manage 2014;85:453–459. [CrossRef]
  • [29] Chen X, Wang RZ, Wang LW, Du S. A modified ammonia-water power cycle using a distillation stage for more efficient power generation. Energy 2017;138:1–11. [CrossRef]
  • [30] Bozorgian A. Analysis and simulating recuperator impact on the thermodynamic performance of the combined water-ammonia cycle. Prog Chem Biochem Res 2020;3:169–179. [CrossRef]
  • [31] Yuan H, Mei N, Yang S, Hu SY. Theoretical investigation of a power cycle using ammonia-water as working fluid. Adv Mater Res 2014;875–877. [CrossRef]
  • [32] Higa M, Yamamoto EY, Oliveira JCD, Conceição WAS. Evaluation of the integration of an ammonia-water power cycle in an absorption refrigeration system of an industrial plant. Energy Conver Manage 2018;178:265–276. [CrossRef]
  • [33] Kim KH, Kim K, Ko HJ. Entropy and exergy analysis of a heat recovery vapor generator for ammonia-water mixtures. Entropy 2014;16:2056–2070. [CrossRef]
  • [34] Altamirano A, Pierrès NL, Stutz B. Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: theoretical, experimental and commercial cycles. Int J Refrig 2019;106:350–373. [CrossRef]
  • [35] Sun L, Han W, Zheng D, Jin H. Assessment of an ammonia-water power/cooling cogeneration system with adjustable solution concentration. Appl Therm Engineer 2013;61:443–450. [CrossRef]
  • [36] Wang C, Liu Y, Lian X, Song Q, Li J. Development of combined cooling and power system with NH3-H2O absorption cycle driven by solar energy. Adv Mater Res 2013;614–615:132–138. [CrossRef]
  • [37] Totla PNB, Arote SS, Gaikwad SV, Jodh SP, Kattimani SK. Comparison of the performances of NH3-H20 and Libr-H2O vapor absorption refrigeration cycles. Int J Eng Res Appl 2016;6:8–13. [CrossRef]
  • [38] Thorin, E. Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures. Int J Thermophys 2000;21:853–870. [CrossRef]
  • [39] Luo C, Zhao F, Zhang N. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia-water cycle. Energy Conver Manage 2014;87:895–904. [CrossRef]
  • [40] Raju G, Kanidarapu NR. A review on efficiency improvement methods in organic Rankine cycle system: an exergy approach. Int J Adv Appl Sci 2022;11:1–10. [CrossRef]
  • [41] Mohtaram S, Chen W, Zargar T, Lin J. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle. Energy Conver Manage 2017;134,:77–87. [CrossRef]
  • [42] Shokati N, Khanahmadzadeh S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle. Appl Therm Engineer 2018;141:1141–1160. [CrossRef]
  • [43] Roy P, Désilets M, Galanis N, Nesreddine H, Cayer E. Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3-H2O mixture as working fluid. Int J Therm Sci 2010;49:48–58. [CrossRef]
  • [44] Sharma A, Shukla AK, Singh O, Sharma M. Recent advances in gas/steam power cycles for concentrating solar power. Int J Ambient Energy 2021;43:4916–4727. [CrossRef]
  • [45] Wang ZX, Du S, Wang LW, Chen X. Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery. Renew Energy 2020;146:651–661. [CrossRef]
  • [46] Sanchis E, Calvet S, Del Prado A, Estellés F. A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosyst Eng 2018;178:176–183. [CrossRef]
  • [47] Sutton MA, Erisman JW, Dentener F, Möller D. Ammonia in the environment: From ancient times to the present. Environ Pollut 2008;156:583–604. [CrossRef]
  • [48] Bicer Y, Dincer I, Vezina G, Raso F. Impact assessment and environmental evaluation of various ammonia production processes. Environ Manage 2017;59:842–855. [CrossRef]
  • [49] Song J, Li X, Ren X, Tian H, Shu G, Gu C. Thermodynamic and economic investigations of transcritical CO2-cycle systems with integrated radial-inflow turbine performance predictions. Appl Therm Engineer 2020;165:114604. [CrossRef]
  • [50] Huang G, Shu G, Tian H, Shi L, Zhuge W, Tao L. Experiments on a small-scale axial turbine expander used in CO2 transcritical power cycle. Appl Energy 2019;255:113853. [CrossRef]
  • [51] Ge YT, Li L, Luo X, Tassou SA. Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles. Appl Energy 2018;227:220–230. [CrossRef]
  • [52] Li L, Ge YT, Luo X, Tassou SA. Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations. Appl Therm Engineer 2018;136:708–717. [CrossRef]
  • [53] Li MJ, Zhu HH, Guo JQ, Wang K, Tao WQ. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Appl Therm Engineer 217;126:255–275. [CrossRef]
  • [54] Bamisile O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V, et al. Comparative performance analysis of solar powered supercritical-transcritical CO2 based systems for hydrogen production and multigeneration. Int J Hydrogen Energy 2021;46:26272–26288. [CrossRef]
  • [55] Chai L, Tassou SA. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm Sci Engineer Prog 2020;18:100543. [CrossRef]
  • [56] Li L, Ge YT, Luo X, Tassou SA. Design and dynamic investigation of low-grade power generation systems with CO2 transcritical power cycles and R245fa organic Rankine cycles. Therm Sci Engineer Prog 2018;8:211–222. [CrossRef]
  • [57] Mehrpooya M, Golestani B, Ali Mousavian SM. Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle. Sustain Energy Technol Assess 2020;40:100767. [CrossRef]
  • [58] Mosaffa AH, Farshi LG. Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer. Energy Conver Manage 2020;207:112542. [CrossRef]
  • [59] Besarati SM, Goswami DY. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. J Sol Energy Engineer 2014;136:4025700. [CrossRef]
  • [60] Pizzarelli M. The status of the research on the heat transfer deterioration in supercritical fluids: a review. Int Commun Heat Mass Transfer 2018;95:132–138. [CrossRef]
  • [61] Wang E, Peng N, Zhang M. System design and application of supercritical and transcritical CO2 power cycles: a review. Front Energy Res 2021;9:1–20. [CrossRef]
  • [62] Liao G, Liu L, EJ, Zhang F, Chen J, Deng Y, et al. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: a review. Energy Convers Manag 2019;199:111986. [CrossRef]
  • [63] Zhang Y, Du Y, Lu X, Zhao P, Dai Y. Performance improvement of a solar-powered recompression supercritical carbon dioxide cycle by introducing an ammonia-water cooling-power system, Front Energy Res 2018;9:1–16. [CrossRef]
  • [64] Milani D, Luu MT, McNaughton R, Abbas A. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: a vital transition for low-carbon power generation industry. Energy Convers Manag 2017;148:1317–1331. [CrossRef]
  • [65] Luu MT, Milani D, McNaughton R, Abbas A. Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Appl Therm Eng 2018;136:682–700. [CrossRef]
  • [66] Luu MT, Milani D, McNaughton R, Abbas A. Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Appl Energy 2017;199:247–263. [CrossRef]
  • [67] Kizilkan O, Yamaguchi H. Feasibility research on the novel experimental solar-assisted CO2 based Rankine cycle integrated with absorption refrigeration. Energy Conver Manage 2020;205:112390. [CrossRef]
  • [68] Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system. Appl Energy 2010;87:1295–1306. [CrossRef]
  • [69] Khankari G, Karmakar S. Power generation from fluegas waste heat in a 500 MWe subcritical coal-fired thermal power plant using solar assisted Kalina Cycle System. Appl Therm Engineer 2018;138:235–245. [CrossRef]
  • [70] Facão J, Palmero-Marrero A, Oliveira AC. Analysis of a solar assisted micro-cogeneration ORC system. Int J Low Carbon Technol 2018;3:254–264. [CrossRef]
  • [71] Noriega-Sánchez CJ. A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling. RevistaIngenio 2021;18:62–69. [CrossRef]
  • [72] Colonna P, Casati E, Trapp C, Mathijssen T, Larjola J, Turunen-Saaresti T, et al. Organic Rankine Cycle power systems: from the concept to current technology, applications, and an outlook to the future. J Eng Gas Turbines Power 2015;137:100801. [CrossRef]
  • [73] Ahn Y, Bae SJ, Kim M, Cho SK, Baik S, Lee JI, et al. Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineer Technol 2015;47:647–661. [CrossRef]
  • [74] Delgado-Torres AM, García-Rodríguez L. Solar desalination driven by Organic Rankine Cycles (Orc) and supercritical CO2 power cycles: an update. Processes 2022;10:153. [CrossRef]
  • [75] Calderón A, Barreneche C, Palacios A, Segarra M, Prieto C, Rodriguez‐Sanchez A, et al. Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage 2019;1:e63. [CrossRef]
  • [76] Khandelwal N, Sharma M, Singh O, Shukla AK. Recent developments in integrated solar combined cycle power plants. J Therm Sci 2022;29:298–322. [CrossRef]
  • [77] Mondejar ME, Thern M. Non-conventional working fluids for thermal power generation: A review. Postdoc J 2014;2:1–14. [CrossRef]
  • [78] Ho CK, Iverson BD. Review of high-temperature central receiver designs for concentrating solar power. Renew Sustain Energy Rev 2014;29:835–846. [CrossRef]
  • [79] Walther DC, Ahn J. Advances and challenges in the development of power-generation systems at small scales. Prog Energy Combust Sci 2011;37:583–610. [CrossRef]
  • [80] Riffat S, Aydin D, Powell R, Yuan Y. Overview of working fluids and sustainable heating, cooling and power generation technologies. Int J Low Carbon Technol 2017;12:369–382. [CrossRef]
  • [81] Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems - a review. Appl Energy 2015;146:383–396. [CrossRef]
  • [82] Babatunde AF, Sunday OO. A review of working fluids for Organic Rankine Cycle (ORC) applications. IOP Conf Ser Mater Sci Eng 2019;413:012019. [CrossRef]
  • [83] Alrebei OF, Amhamed AI, El-Naas MH, Hayajnh M, Orabi YA, Fawaz W, et al. State of the art in separation processes for alternative working fluids in clean and efficient power generation. Separations 2022;9:14. [CrossRef]
  • [84] Ziółkowski P, Hyrzyński R, Lemański M, Kraszewski B, Bykuć S, Głuch S, et al. Different design aspects of an Organic Rankine Cycle turbine for electricity production using a geothermal binary power plant. Energy Conver Manage 2021;246:114672. [CrossRef]
  • [85] Igobo ON, Davies PA. Review of low-temperature vapour power cycle engines withquasi-isothermal expansion. Energy 2014;70:22–34. [CrossRef]
  • [86] Su W, Zhao L, Deng S. Recent advances in modeling the vapor-liquid equilibrium of mixed working fluids. Fluid Phase Equilib 2017;432:28–44. [CrossRef]
  • [87] Chagnon-Lessard N, Potvin FM, Gosselin L. Geothermal power plants with maximized specific power output: Optimal working fluid and operating conditions of subcritical and transcritical Organic Rankine Cycles. Geothermics 2016;64:111–124. [CrossRef]
  • [88] Tasnin W, Saikia LC, Raju M. Electrical power and energy systems deregulated AGC of multi-area system incorporating dish-Stirling solar thermal and geothermal power plants using fractional order cascade controller. Int J Electr Power Energy Syst 2018;101:60–74. [CrossRef]
  • [89] Shulyupin A, Chernev II. Some methods for reducing of steam deficit at geothermal power plants exploitation: experience of Kamchatka (Russia). Geotherm Energy 2014;3:23. [CrossRef]
  • [90] Basaran A, Ozgener L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Conver Manage 2013;76:483–498. [CrossRef]
  • [91] Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications. Renew Sustain Energy Rev 2018;94:889–901. [CrossRef]
  • [92] Liu Q, Shang L, Duan Y. Performance analyses of a hybrid geothermal – fossil power generation system using low-enthalpy geothermal resources. Appl Energy 2016;162:149–162. [CrossRef]
  • [93] Bassetti MC, Consoli D, Manente G, Lazzaretto A. Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage. Renew Energy 2018;128:460–472. [CrossRef]
  • [94] Cui G, Pei S, Rui Z, Dou B, Ning F, Wang J. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2. Energy 2021;217:119340. [CrossRef]
  • [95] Lei Z, Zhang Y, Yu Z, Hu Z, Li L, Zhang S, et al. Exploratory research into the enhanced geothermal system power generation project: the Qiabuqia geothermal field, Northwest China. Renew Energy 2019;139:52–70. [CrossRef]
  • [96] Prananto LA, Mumin GF, Soelaiman TMF, Aziz M. Dry steam cycle optimization for the utilization of excess steam at Kamojang geothermal power plant. AIP Conf Proceed 2018;1984:020021. [CrossRef]
  • [97] Venkatalaxmi A, Padmavathi BS, Amaranath T. A general solution of unsteady stokes equations. Fluid Dynamic Res 2004;35:229. [CrossRef]
  • [98] Phillips J. Evaluating the level and nature of sustainable development for a geothermal power plant. Renew Sustain Energy Rev 2010;14:2414–2425. [CrossRef]
  • [99] Bruscoli L, Fiaschi D, Manfrida G, Tempesti D. Improving the environmental sustainability of flash geothermal power plants - a case study. Sustainability 2015;7:15262–15283. [CrossRef]
  • [100] Assad MEH, Aryanfar Y, Radman S, Yousef B, Pakatchian M. Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature. Int J Low Carbon Technol 2021;16:873–881. [CrossRef]
  • [101] Akar S, Augustine C, Kurup P, Mann M. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines. Available at: https://www.nrel.gov/docs/fy18osti/68747.pdf. Accessed Apr 29, 2024.
  • [102] Pasek AD, Fauzi Soelaiman TA, Gunawan C. Thermodynamics study of flash–binary cycle in geothermal power plant. Renew Sustain Energy Rev 2011;15:5218–5223. [CrossRef]
  • [103] Liu X, Wei M, Yang Y, Wang X. Thermo-economic analysis and optimization selection of ORC system configurations for low temperature binary-cycle geothermal plant. Appl Therm Engineer 2017;125:153–164. [CrossRef]
  • [104] Grassiani M. Siliceous Scaling Aspects of Geothermal Power Generation Using Binary Cycle Heat Recovery. Available at: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0549.PDF. Accessed Apr 29, 2024.
  • [105] Nasruddin N, Saputra ID, Mentari T, Bardow A, Marcelina O, Berlin S. Exergy, exergoeconomic, and exergoenvironmental optimization of the geothermal binary cycle power plant at Ampallas, West Sulawesi, Indonesia. Therm Sci Engineer Prog 2020;19:100625. [CrossRef]
  • [106] Setel A, Gordan M, Antal C, Bococi D. Use of geothermal energy to produce electricity at average temperatures. In: 2015 13th International Conference on Engineering of Modern Electric Systems (EMES). Oradea, Romania: 2015. [CrossRef]
  • [107] Tomarov GV, Shipkov AA, Sorokina EV. Improving geothermal power plants with a binary cycle. Therm Engineer 2015;62:878–885. [CrossRef]
  • [108] Santos JJ, Rodríguez CE, Carvalho M, Barone MA, Palacio JC, Carrillo RA. Geothermal Power. In: Advances in renewable energies and power technologies. 1st ed. 2018;173-205. Amsterdam: Elsevier, 2018. p. 173–205. [CrossRef]
  • [109] Zarrouk SJ, Moon H. Efficiency of geothermal power plants: a worldwide review. Geothermics 2014;51:142–153. [CrossRef]
  • [110] Sundari P, Setyo P, Rudiyanto B, Hijriawan M. Utilization of excess steam from a vent valve in a geothermal power plant. Energy Nexus 2022;7:100114. [CrossRef]
  • [111] Guzovic Z, Loncar D, Ferdelji N. Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy. Proceed Inst Civil Engineer Energy 2010;35:3429–3440. [CrossRef]
  • [112] Wang J, Wang J, Dai Y, Zhao P. Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG. Appl Therm Engineer 2014;70:531–540. [CrossRef]
  • [113] Abdolalipouradl M, Khalilarya S, Jafarmadar S. Exergoeconomic analysis of a novel integrated transcritical CO 2 and Kalina 11 cycles from Sabalan geothermal power plant. Energy Conver Manage 2018;195:420–435. [CrossRef]
  • [114] Chasapis D, Misirlis D, Papadopoulo P, Kleidis K. Thermodynamic analysis on the performance of a low- enthalpy geothermal field using a CO2 supercritical binary cycle. Available at: https://www.aidic.it/cet/19/76/169.pdf. Accessed Apr 29, 2024.
  • [115] Wu C, Wang S, Li J. Parametric study on the effects of a recuperator on the design and off -design performances for a CO2 transcritical power cycle for low temperature geothermal plants. Appl Therm Engineer 2018;137:644–658. [CrossRef]
  • [116] Li S, Dai Y. Thermo-economic comparison of Kalina and CO2 transcritical power cycle for low temperature geothermal sources in China. Appl Therm Engineer 2014;70:139–152. [CrossRef]
  • [117] Mahmoud M, Ramadan M, Naher S, Pullen K, Olabi A. CO 2 – based transcritical Rankine cycle coupled with a ground-cooled condenser. Therm Sci Engineer Prog 2021;25:100948. [CrossRef]
  • [118] Sun F, Yao Y, Li G, Li X. Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid. Energy Conver Manage 2018;171:1529–1539. [CrossRef]
  • [119] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy 2007;81:829–837. [CrossRef]
  • [120] Shahnazari MR, Lari HR. Modeling of a solar power plant in Iran. Energy Strateg Rev 2017;18:24–37. [CrossRef]
  • [121] Barron-Gafford GA, Minor RL, Alle NA, Cronin AD, Brooks AE, Pavao-Zuckerman M. The Photovoltaic Heat Island Effect: larger solar power plants increase local temperatures. Sci Rep 2016;6:35070. [CrossRef]
  • [122] Chacartegui R, de Escalona JMM, Sánchez D, Monje B, Sánchez T. Alternative cycles based on carbon dioxide for central receiver solar power plants. Appl Therm Engineer 2011;31:872–879. [CrossRef]
  • [123] Gasparovic I, Gasparovic M. Determining optimal solar power plant locations based on remote sensing and GIS methods : a case study from Croatia. Remote Sens 2019;11:1481. [CrossRef]
  • [124] Hossain MZ, Illias HA. Binary power generation system by utilizing solar energy in Malaysia. Ain Shams Engineer J 2022;13:101650. [CrossRef]
  • [125] Oró E, Gil A, de Gracia A, Boer D, Cabeza LF. Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew Energy 2021;44:166–173. [CrossRef]
  • [126] Emre M, Dincer I. Development and assessment of a solar driven trigeneration system with storage for electricity, ammonia and fresh water production. Energy Conver Manage 2021;245:114585. [CrossRef]
  • [127] Hossain MM, Ahmed NA, Shahriyar MA, Ehsan MM, Riaz F, Salehin S, et al. Analysis and optimization of a modified Kalina cycle system for low-grade heat utilization. Energy Conver Manage X 2021;12:100121. [CrossRef]
  • [128] Tukenmez N, Koc M, Ozturk M. A novel combined biomass and solar energy conversion-based multigeneration system with hydrogen and ammonia generation. Int J Hydrogen Energy 2021;46:16319–16343. [CrossRef]
  • [129] Ghorbani B, Ebrahimi A, Moradi M, Ziabasharhagh M. Continuous production of cryogenic energy at low-temperature using two-stage ejector cooling system, Kalina power cycle, cold energy storage unit , and photovoltaic system. Energy Conver Manage 2021;227:113541. [CrossRef]
  • [130] Delgado-Torres AM, García-Rodríguez L. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy Conver Manage 2010;51:2846–2856. [CrossRef]
  • [131] Singh OK, Kaushik SC. Reducing CO2 emission and improving exergy based performance of natural gas fired combined cycle power plants by coupling Kalina cycle. Energy 2013;55:1002–1013. [CrossRef]
  • [132] Ishaq H, Dincer I. Dynamic modelling of a solar hydrogen system for power and ammonia production. Int J Hydrogen Energy 2021;46:13985–14004. [CrossRef]
  • [133] Al-Hamed KHM, Dincer I. A new solar energy-based integrated carbon capturing system with a gas turbine-supercritical CO2 combined power cycle. Energy Conver Manage 2022;251:114999. [CrossRef]
  • [134] Valencia-Chapi R, Coco-Enríquez L, Muñoz-Antón J. Supercritical CO2 mixtures for advanced brayton power cycles in line-focusing solar power plants. Appl Sci 2019;10:55. [CrossRef]
  • [135] Bamisileet O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V. Comparative performance analysis of solar powered supercritical-transcritical CO2 based systems for hydrogen production and multigeneration. Int J Hydrogen Energy 2021;46:26272–26288. [CrossRef]
  • [136] Dunham MT, Iverson BD. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew Sustain Energy Rev 2014;30:758–770. [CrossRef]
  • [137] Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation - a review. Renew Sustain Energy Rev 2013;20:430–442. [CrossRef]
  • [138] Rajashekara K. Hybrid fuel-cell strategies for clean power generation. IEEE Trans Ind Appl 2005;41:682–689. [CrossRef]
  • [139] Spinelli M, Di Bona D, Gatti M, Martelli E, Viganò F, Consonni S. Assessing the potential of molten carbonate fuel cell-based schemes for carbon capture in natural gas-fired combined cycle power plants J Power Sources 2020;448:227223. [CrossRef]
  • [140] Massardo AF, McDonald CF, Korakianitis T. Microturbine / fuel-cell coupling for generation microturbine / fuel-cell coupling for high- efficiency electrical-power generation. J Engineer Gas Turb Power 2022;124:110–116. [CrossRef]
  • [141] Lukas MD, Lee KY, Ghezel H. Modeling and cycling control of carbonate fuel cell power plants. Cont Engineer Prac 2002;10:197–206. [CrossRef]
  • [142] Ma L, Mao J, Marefati M. Assessment of a new coal-fired power plant integrated with solid oxide fuel cell and parabolic trough solar collector. Process Saf Environ Prot 2022;163:340–352. [CrossRef]
  • [143] Skjervold V. Nord LO. Increased flexibility of coal-fired power plant with moving bed temperature-swing adsorption CO2 capture by use of thermal energy storage. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4274960. Accessed Apr 29, 2024.
  • [144] Fan G, Dai Y. Thermo-economic optimization and part-load analysis of the combined supercritical CO2 and Kalina cycle. Energy Conver Manage 2021;245:114572. [CrossRef]
  • [145] Zeeshan M, Musharavati F, Khanmohammadi S, Pakseresht AH. Design and comparative exergy and exergo-economic analyses of a novel integrated Kalina cycle improved with fuel cell and thermoelectric module. Energy Conver Manage 2020;220:113081. [CrossRef]
  • [146] Pierobon L, Rokni M. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant with a Kalina Cycle. 2015;12:610–619. [CrossRef]
  • [147] Bombarda P, Invernizzi CM, Pietra C. Heat recovery from Diesel engines: a thermodynamic comparison between Kalina and ORC cycles. Appl Therm Engineer 2010;30:212–219. [CrossRef]
  • [148] Gholamian E, Zare V. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles. Energy Conver Manage 2016;117:150–161. [CrossRef]
  • [149] Ryu J, Ko A, Park SH, Park JP. Thermo-economic assessment of molten carbonate fuel cell hybrid system combined between individual sCO2 power cycle and district heating. Appl Therm Engineer 2020;169:114911. [CrossRef]
  • [150] Ahmadi MH, Mohammadi A, Pourfayaz F, Mehrpooya M, Bidi M, Valero A, et al. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. J Nat Gas Sci Engineer 2016;34:428–438. [CrossRef]
  • [151] Ahmadi MH, Sadaghiani MS, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic Rankine Cycle power plant with liquefied natural gas as heat sink. Entropy 2018;20;484. [CrossRef]
  • [152] Bae SJ, Ahn Y, Lee J, Lee JI. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J Power Sources 2014;270:608–618. [CrossRef]
  • [153] Hemmatabady H, Mehrpooya M, Mousavi SA. Development of a novel hybrid SOFC/GT system and transcritical CO2 cycle for CCHP purpose in the district scale. J Therm Anal Calorim 2020;147:489–507. [CrossRef]
  • [154] Jouybari AK, Ilinca A, Ghorbani B, Rooholamini S. Thermodynamic and exergy evaluation of an innovative hydrogen liquefaction structure based on ejector-compression refrigeration unit, cascade multi-component refrigerant system, and Kalina power plant. Int J Hydrogen Energy 2022;47:26369–26393. [CrossRef]
  • [155] Aksar M, Yağlı H, Koç Y, Koç A, Sohani A, Yumrutaş R. Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: a comparative and comprehensive case study for a cogeneration system. Energy Conver Manage 2022;265:115739. [CrossRef]

Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review

Yıl 2024, Cilt: 10 Sayı: 3, 790 - 810, 21.05.2024

Öz

The primary focus of this review article is to examine the power cycles employed for generating electricity from steam-dominated resources. It discusses the phenomenon of Transcritical CO2 (T-CO2) power cycles and the Rankine Cycle, which have been extensively studied by numerous academics. The article also briefly explores fuel-cell-based power plants using binary cycles, geothermal power plants, and solar-assisted power plants. The article presents information on power generation, thermal efficiency, energy efficiency, and exergy efficiency of these plants. The investigation reveals that geothermal power plants have thermal efficiencies ranging from 6.5% to 16.63% and exergy efficiencies ranging from 7.95% to 82%, producing power in the range of 199.1 kW to 19,448 kW. Solar power plants produce power ranging from 550.9 kW to 4500 kW, with energy efficiency between 21.93% and 57% and exergy efficiency between 50.5% and 64.92%. Fuel cell power plants using NH3+H2O as the working fluid generate power from 1015 kW to 20125 kW, with thermal efficiency between 25.4% and 70.3% and exergy efficiency between 12.1% and 36%. The article highlights the use of the Kalina cycle in these scenarios.

Kaynakça

  • [1] Musgrove G, Wright S. Introduction and Background. In: Klaus B, Peter F, Richard D, editors. Fundamentals and applications of supercritical carbon dioxide (sCO₂) based power cycles. Cambridge: Woodhead Publishing; 2017. p. 1–22. [CrossRef]
  • [2] Linke P, Papadopoulos AI, Seferlis P. Systematic methods for working fluid selection and the design, integration and control of organic Rankine cycles - a review. Energies 2015;8:4755–4801. [CrossRef]
  • [3] Wu P, Ma Y, Gao C, Liu W, Shan J, Huang Y, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications. Nucl Eng Des 2020;368:110767. [CrossRef]
  • [4] Sulaiman MA, Waheed MA, Adewunmi BA, Alamu OJ. Investigating the influence of incorporation of solar aided power generation technology on a steam power plant in Nigeria. Int Energy J 2015;15:167–176.
  • [5] Kumar A, Shukla SK. A Review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 2015;74:462–469. [CrossRef]
  • [6] Jamel MS, Abd Rahman A, Shamsuddin AH. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev 2013;20:71–81. [CrossRef]
  • [7] Paital SR, Ray PK, Mohanty A. Comprehensive review on enhancement of stability in multimachine power system with conventional and distributed generations. IET Renew Power Gener 2018;12:1854–1863. [CrossRef]
  • [8] Phillips J. Evaluating the level and nature of sustainable development for a geothermal power plant. Renew Sustain Energy Rev 2010;14:2414–2425. [CrossRef]
  • [9] Karadas M, Celik HM, Serpen U, Toksoy M. Multiple regression analysis of performance parameters of a binary cycle geothermal power plant. Geothermics 2015;54:68–75. [CrossRef]
  • [10] Zhang X, He M, Zhang Y. A review of research on the Kalina cycle. Renew Sustain Energy Rev 2012;16:5309–5318. [CrossRef]
  • [11] Giovannelli A. State of the art on small-scale concentrated solar power plants. Energy Procedia 2015;82:607–614. [CrossRef]
  • [12] Akorede MF, Hizam H, Pouresmaeil E. Distributed energy resources and benefits to the environment. Renew Sustain Energy Rev 2010;14:724–734. [CrossRef]
  • [13] Chauhan A, Saini RP. A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control. Renew Sustain Energy Rev 2014;38:99–120. [CrossRef]
  • [14] Al-Sulaiman FA. Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles. Energy 2013;58:561–570. [CrossRef]
  • [15] Chen L, Meng Z, Ge Y, Wu F. Performance analysis and optimization for irreversible combined carnot heat engine working with ideal quantum gases. Entropy (Basel) 2021;23:536. [CrossRef]
  • [16] Keshvarparast A, Ajarostaghi SSM, Delavar MA.Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Appl Therm Eng 2020;172:115160. [CrossRef]
  • [17] Olumayegun O, Wang M, Kelsall G. Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel 2016;180:694–717. [CrossRef]
  • [18] Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N, Mirhadizadeh SA. Review of organic Rankine cycle for small-scale applications. Energy Conver Manage 2017;134:135–155. [CrossRef]
  • [19] Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – an overview in organic Rankine cycle. Energy Conver Manage 2018;166:474–488. [CrossRef]
  • [20] Abadi GB, Kim KC. Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: advantages and issues. Renew Sustain Energy Rev 2017;73:1000–1013. [CrossRef]
  • [21] Sarkar J, Bhattacharyya S. Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study. Energy 2015;90:1618–1625. [CrossRef]
  • [22] Wang M, Manera A, Qiu S, Su GH. Ammonia-water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant. Prog Nuclear Energy 2016;91:26–37. [CrossRef]
  • [23] Kalina AI. Combined-cycle system with novel bottoming cycle. J Eng Gas Turbines Power 1984;106:737–742. [CrossRef]
  • [24] Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ. Ammonia for power. Prog Energy Combust Sci 2018;69:63–102. [CrossRef]
  • [25] Kim KH, Han CH, Kim K. Comparative exergy analysis of ammonia-water based Rankine cycles with and without regeneration. Int J Exergy 2013;12:344–361. [CrossRef]
  • [26] Meser M, Veith S, Zimmermann J. Disclosure, enforcement, and capital market properties: a longitudinal analysis for Germany. Schmalenbach Business Rev 2015;16:254–288. [CrossRef]
  • [27] Yuan H, Mei N, Li Y, Yang S, Hu S, Han Y. Theoretical and experimental investigation on a liquid-gas ejector power cycle using ammonia-water. Sci China Technol Sci 2013;56:2289–2298. [CrossRef]
  • [28] Junye H, Yaping C, Jiafeng W. Thermal performance of a modified ammonia-water power cycle for reclaiming mid/low-grade waste heat. Energy Conver Manage 2014;85:453–459. [CrossRef]
  • [29] Chen X, Wang RZ, Wang LW, Du S. A modified ammonia-water power cycle using a distillation stage for more efficient power generation. Energy 2017;138:1–11. [CrossRef]
  • [30] Bozorgian A. Analysis and simulating recuperator impact on the thermodynamic performance of the combined water-ammonia cycle. Prog Chem Biochem Res 2020;3:169–179. [CrossRef]
  • [31] Yuan H, Mei N, Yang S, Hu SY. Theoretical investigation of a power cycle using ammonia-water as working fluid. Adv Mater Res 2014;875–877. [CrossRef]
  • [32] Higa M, Yamamoto EY, Oliveira JCD, Conceição WAS. Evaluation of the integration of an ammonia-water power cycle in an absorption refrigeration system of an industrial plant. Energy Conver Manage 2018;178:265–276. [CrossRef]
  • [33] Kim KH, Kim K, Ko HJ. Entropy and exergy analysis of a heat recovery vapor generator for ammonia-water mixtures. Entropy 2014;16:2056–2070. [CrossRef]
  • [34] Altamirano A, Pierrès NL, Stutz B. Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: theoretical, experimental and commercial cycles. Int J Refrig 2019;106:350–373. [CrossRef]
  • [35] Sun L, Han W, Zheng D, Jin H. Assessment of an ammonia-water power/cooling cogeneration system with adjustable solution concentration. Appl Therm Engineer 2013;61:443–450. [CrossRef]
  • [36] Wang C, Liu Y, Lian X, Song Q, Li J. Development of combined cooling and power system with NH3-H2O absorption cycle driven by solar energy. Adv Mater Res 2013;614–615:132–138. [CrossRef]
  • [37] Totla PNB, Arote SS, Gaikwad SV, Jodh SP, Kattimani SK. Comparison of the performances of NH3-H20 and Libr-H2O vapor absorption refrigeration cycles. Int J Eng Res Appl 2016;6:8–13. [CrossRef]
  • [38] Thorin, E. Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures. Int J Thermophys 2000;21:853–870. [CrossRef]
  • [39] Luo C, Zhao F, Zhang N. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia-water cycle. Energy Conver Manage 2014;87:895–904. [CrossRef]
  • [40] Raju G, Kanidarapu NR. A review on efficiency improvement methods in organic Rankine cycle system: an exergy approach. Int J Adv Appl Sci 2022;11:1–10. [CrossRef]
  • [41] Mohtaram S, Chen W, Zargar T, Lin J. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle. Energy Conver Manage 2017;134,:77–87. [CrossRef]
  • [42] Shokati N, Khanahmadzadeh S. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle. Appl Therm Engineer 2018;141:1141–1160. [CrossRef]
  • [43] Roy P, Désilets M, Galanis N, Nesreddine H, Cayer E. Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3-H2O mixture as working fluid. Int J Therm Sci 2010;49:48–58. [CrossRef]
  • [44] Sharma A, Shukla AK, Singh O, Sharma M. Recent advances in gas/steam power cycles for concentrating solar power. Int J Ambient Energy 2021;43:4916–4727. [CrossRef]
  • [45] Wang ZX, Du S, Wang LW, Chen X. Parameter analysis of an ammonia-water power cycle with a gravity assisted thermal driven “pump” for low-grade heat recovery. Renew Energy 2020;146:651–661. [CrossRef]
  • [46] Sanchis E, Calvet S, Del Prado A, Estellés F. A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosyst Eng 2018;178:176–183. [CrossRef]
  • [47] Sutton MA, Erisman JW, Dentener F, Möller D. Ammonia in the environment: From ancient times to the present. Environ Pollut 2008;156:583–604. [CrossRef]
  • [48] Bicer Y, Dincer I, Vezina G, Raso F. Impact assessment and environmental evaluation of various ammonia production processes. Environ Manage 2017;59:842–855. [CrossRef]
  • [49] Song J, Li X, Ren X, Tian H, Shu G, Gu C. Thermodynamic and economic investigations of transcritical CO2-cycle systems with integrated radial-inflow turbine performance predictions. Appl Therm Engineer 2020;165:114604. [CrossRef]
  • [50] Huang G, Shu G, Tian H, Shi L, Zhuge W, Tao L. Experiments on a small-scale axial turbine expander used in CO2 transcritical power cycle. Appl Energy 2019;255:113853. [CrossRef]
  • [51] Ge YT, Li L, Luo X, Tassou SA. Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles. Appl Energy 2018;227:220–230. [CrossRef]
  • [52] Li L, Ge YT, Luo X, Tassou SA. Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations. Appl Therm Engineer 2018;136:708–717. [CrossRef]
  • [53] Li MJ, Zhu HH, Guo JQ, Wang K, Tao WQ. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Appl Therm Engineer 217;126:255–275. [CrossRef]
  • [54] Bamisile O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V, et al. Comparative performance analysis of solar powered supercritical-transcritical CO2 based systems for hydrogen production and multigeneration. Int J Hydrogen Energy 2021;46:26272–26288. [CrossRef]
  • [55] Chai L, Tassou SA. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm Sci Engineer Prog 2020;18:100543. [CrossRef]
  • [56] Li L, Ge YT, Luo X, Tassou SA. Design and dynamic investigation of low-grade power generation systems with CO2 transcritical power cycles and R245fa organic Rankine cycles. Therm Sci Engineer Prog 2018;8:211–222. [CrossRef]
  • [57] Mehrpooya M, Golestani B, Ali Mousavian SM. Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle. Sustain Energy Technol Assess 2020;40:100767. [CrossRef]
  • [58] Mosaffa AH, Farshi LG. Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer. Energy Conver Manage 2020;207:112542. [CrossRef]
  • [59] Besarati SM, Goswami DY. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. J Sol Energy Engineer 2014;136:4025700. [CrossRef]
  • [60] Pizzarelli M. The status of the research on the heat transfer deterioration in supercritical fluids: a review. Int Commun Heat Mass Transfer 2018;95:132–138. [CrossRef]
  • [61] Wang E, Peng N, Zhang M. System design and application of supercritical and transcritical CO2 power cycles: a review. Front Energy Res 2021;9:1–20. [CrossRef]
  • [62] Liao G, Liu L, EJ, Zhang F, Chen J, Deng Y, et al. Effects of technical progress on performance and application of supercritical carbon dioxide power cycle: a review. Energy Convers Manag 2019;199:111986. [CrossRef]
  • [63] Zhang Y, Du Y, Lu X, Zhao P, Dai Y. Performance improvement of a solar-powered recompression supercritical carbon dioxide cycle by introducing an ammonia-water cooling-power system, Front Energy Res 2018;9:1–16. [CrossRef]
  • [64] Milani D, Luu MT, McNaughton R, Abbas A. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: a vital transition for low-carbon power generation industry. Energy Convers Manag 2017;148:1317–1331. [CrossRef]
  • [65] Luu MT, Milani D, McNaughton R, Abbas A. Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Appl Therm Eng 2018;136:682–700. [CrossRef]
  • [66] Luu MT, Milani D, McNaughton R, Abbas A. Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Appl Energy 2017;199:247–263. [CrossRef]
  • [67] Kizilkan O, Yamaguchi H. Feasibility research on the novel experimental solar-assisted CO2 based Rankine cycle integrated with absorption refrigeration. Energy Conver Manage 2020;205:112390. [CrossRef]
  • [68] Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system. Appl Energy 2010;87:1295–1306. [CrossRef]
  • [69] Khankari G, Karmakar S. Power generation from fluegas waste heat in a 500 MWe subcritical coal-fired thermal power plant using solar assisted Kalina Cycle System. Appl Therm Engineer 2018;138:235–245. [CrossRef]
  • [70] Facão J, Palmero-Marrero A, Oliveira AC. Analysis of a solar assisted micro-cogeneration ORC system. Int J Low Carbon Technol 2018;3:254–264. [CrossRef]
  • [71] Noriega-Sánchez CJ. A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling. RevistaIngenio 2021;18:62–69. [CrossRef]
  • [72] Colonna P, Casati E, Trapp C, Mathijssen T, Larjola J, Turunen-Saaresti T, et al. Organic Rankine Cycle power systems: from the concept to current technology, applications, and an outlook to the future. J Eng Gas Turbines Power 2015;137:100801. [CrossRef]
  • [73] Ahn Y, Bae SJ, Kim M, Cho SK, Baik S, Lee JI, et al. Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineer Technol 2015;47:647–661. [CrossRef]
  • [74] Delgado-Torres AM, García-Rodríguez L. Solar desalination driven by Organic Rankine Cycles (Orc) and supercritical CO2 power cycles: an update. Processes 2022;10:153. [CrossRef]
  • [75] Calderón A, Barreneche C, Palacios A, Segarra M, Prieto C, Rodriguez‐Sanchez A, et al. Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage 2019;1:e63. [CrossRef]
  • [76] Khandelwal N, Sharma M, Singh O, Shukla AK. Recent developments in integrated solar combined cycle power plants. J Therm Sci 2022;29:298–322. [CrossRef]
  • [77] Mondejar ME, Thern M. Non-conventional working fluids for thermal power generation: A review. Postdoc J 2014;2:1–14. [CrossRef]
  • [78] Ho CK, Iverson BD. Review of high-temperature central receiver designs for concentrating solar power. Renew Sustain Energy Rev 2014;29:835–846. [CrossRef]
  • [79] Walther DC, Ahn J. Advances and challenges in the development of power-generation systems at small scales. Prog Energy Combust Sci 2011;37:583–610. [CrossRef]
  • [80] Riffat S, Aydin D, Powell R, Yuan Y. Overview of working fluids and sustainable heating, cooling and power generation technologies. Int J Low Carbon Technol 2017;12:369–382. [CrossRef]
  • [81] Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems - a review. Appl Energy 2015;146:383–396. [CrossRef]
  • [82] Babatunde AF, Sunday OO. A review of working fluids for Organic Rankine Cycle (ORC) applications. IOP Conf Ser Mater Sci Eng 2019;413:012019. [CrossRef]
  • [83] Alrebei OF, Amhamed AI, El-Naas MH, Hayajnh M, Orabi YA, Fawaz W, et al. State of the art in separation processes for alternative working fluids in clean and efficient power generation. Separations 2022;9:14. [CrossRef]
  • [84] Ziółkowski P, Hyrzyński R, Lemański M, Kraszewski B, Bykuć S, Głuch S, et al. Different design aspects of an Organic Rankine Cycle turbine for electricity production using a geothermal binary power plant. Energy Conver Manage 2021;246:114672. [CrossRef]
  • [85] Igobo ON, Davies PA. Review of low-temperature vapour power cycle engines withquasi-isothermal expansion. Energy 2014;70:22–34. [CrossRef]
  • [86] Su W, Zhao L, Deng S. Recent advances in modeling the vapor-liquid equilibrium of mixed working fluids. Fluid Phase Equilib 2017;432:28–44. [CrossRef]
  • [87] Chagnon-Lessard N, Potvin FM, Gosselin L. Geothermal power plants with maximized specific power output: Optimal working fluid and operating conditions of subcritical and transcritical Organic Rankine Cycles. Geothermics 2016;64:111–124. [CrossRef]
  • [88] Tasnin W, Saikia LC, Raju M. Electrical power and energy systems deregulated AGC of multi-area system incorporating dish-Stirling solar thermal and geothermal power plants using fractional order cascade controller. Int J Electr Power Energy Syst 2018;101:60–74. [CrossRef]
  • [89] Shulyupin A, Chernev II. Some methods for reducing of steam deficit at geothermal power plants exploitation: experience of Kamchatka (Russia). Geotherm Energy 2014;3:23. [CrossRef]
  • [90] Basaran A, Ozgener L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Conver Manage 2013;76:483–498. [CrossRef]
  • [91] Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications. Renew Sustain Energy Rev 2018;94:889–901. [CrossRef]
  • [92] Liu Q, Shang L, Duan Y. Performance analyses of a hybrid geothermal – fossil power generation system using low-enthalpy geothermal resources. Appl Energy 2016;162:149–162. [CrossRef]
  • [93] Bassetti MC, Consoli D, Manente G, Lazzaretto A. Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage. Renew Energy 2018;128:460–472. [CrossRef]
  • [94] Cui G, Pei S, Rui Z, Dou B, Ning F, Wang J. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2. Energy 2021;217:119340. [CrossRef]
  • [95] Lei Z, Zhang Y, Yu Z, Hu Z, Li L, Zhang S, et al. Exploratory research into the enhanced geothermal system power generation project: the Qiabuqia geothermal field, Northwest China. Renew Energy 2019;139:52–70. [CrossRef]
  • [96] Prananto LA, Mumin GF, Soelaiman TMF, Aziz M. Dry steam cycle optimization for the utilization of excess steam at Kamojang geothermal power plant. AIP Conf Proceed 2018;1984:020021. [CrossRef]
  • [97] Venkatalaxmi A, Padmavathi BS, Amaranath T. A general solution of unsteady stokes equations. Fluid Dynamic Res 2004;35:229. [CrossRef]
  • [98] Phillips J. Evaluating the level and nature of sustainable development for a geothermal power plant. Renew Sustain Energy Rev 2010;14:2414–2425. [CrossRef]
  • [99] Bruscoli L, Fiaschi D, Manfrida G, Tempesti D. Improving the environmental sustainability of flash geothermal power plants - a case study. Sustainability 2015;7:15262–15283. [CrossRef]
  • [100] Assad MEH, Aryanfar Y, Radman S, Yousef B, Pakatchian M. Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature. Int J Low Carbon Technol 2021;16:873–881. [CrossRef]
  • [101] Akar S, Augustine C, Kurup P, Mann M. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines. Available at: https://www.nrel.gov/docs/fy18osti/68747.pdf. Accessed Apr 29, 2024.
  • [102] Pasek AD, Fauzi Soelaiman TA, Gunawan C. Thermodynamics study of flash–binary cycle in geothermal power plant. Renew Sustain Energy Rev 2011;15:5218–5223. [CrossRef]
  • [103] Liu X, Wei M, Yang Y, Wang X. Thermo-economic analysis and optimization selection of ORC system configurations for low temperature binary-cycle geothermal plant. Appl Therm Engineer 2017;125:153–164. [CrossRef]
  • [104] Grassiani M. Siliceous Scaling Aspects of Geothermal Power Generation Using Binary Cycle Heat Recovery. Available at: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0549.PDF. Accessed Apr 29, 2024.
  • [105] Nasruddin N, Saputra ID, Mentari T, Bardow A, Marcelina O, Berlin S. Exergy, exergoeconomic, and exergoenvironmental optimization of the geothermal binary cycle power plant at Ampallas, West Sulawesi, Indonesia. Therm Sci Engineer Prog 2020;19:100625. [CrossRef]
  • [106] Setel A, Gordan M, Antal C, Bococi D. Use of geothermal energy to produce electricity at average temperatures. In: 2015 13th International Conference on Engineering of Modern Electric Systems (EMES). Oradea, Romania: 2015. [CrossRef]
  • [107] Tomarov GV, Shipkov AA, Sorokina EV. Improving geothermal power plants with a binary cycle. Therm Engineer 2015;62:878–885. [CrossRef]
  • [108] Santos JJ, Rodríguez CE, Carvalho M, Barone MA, Palacio JC, Carrillo RA. Geothermal Power. In: Advances in renewable energies and power technologies. 1st ed. 2018;173-205. Amsterdam: Elsevier, 2018. p. 173–205. [CrossRef]
  • [109] Zarrouk SJ, Moon H. Efficiency of geothermal power plants: a worldwide review. Geothermics 2014;51:142–153. [CrossRef]
  • [110] Sundari P, Setyo P, Rudiyanto B, Hijriawan M. Utilization of excess steam from a vent valve in a geothermal power plant. Energy Nexus 2022;7:100114. [CrossRef]
  • [111] Guzovic Z, Loncar D, Ferdelji N. Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy. Proceed Inst Civil Engineer Energy 2010;35:3429–3440. [CrossRef]
  • [112] Wang J, Wang J, Dai Y, Zhao P. Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG. Appl Therm Engineer 2014;70:531–540. [CrossRef]
  • [113] Abdolalipouradl M, Khalilarya S, Jafarmadar S. Exergoeconomic analysis of a novel integrated transcritical CO 2 and Kalina 11 cycles from Sabalan geothermal power plant. Energy Conver Manage 2018;195:420–435. [CrossRef]
  • [114] Chasapis D, Misirlis D, Papadopoulo P, Kleidis K. Thermodynamic analysis on the performance of a low- enthalpy geothermal field using a CO2 supercritical binary cycle. Available at: https://www.aidic.it/cet/19/76/169.pdf. Accessed Apr 29, 2024.
  • [115] Wu C, Wang S, Li J. Parametric study on the effects of a recuperator on the design and off -design performances for a CO2 transcritical power cycle for low temperature geothermal plants. Appl Therm Engineer 2018;137:644–658. [CrossRef]
  • [116] Li S, Dai Y. Thermo-economic comparison of Kalina and CO2 transcritical power cycle for low temperature geothermal sources in China. Appl Therm Engineer 2014;70:139–152. [CrossRef]
  • [117] Mahmoud M, Ramadan M, Naher S, Pullen K, Olabi A. CO 2 – based transcritical Rankine cycle coupled with a ground-cooled condenser. Therm Sci Engineer Prog 2021;25:100948. [CrossRef]
  • [118] Sun F, Yao Y, Li G, Li X. Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid. Energy Conver Manage 2018;171:1529–1539. [CrossRef]
  • [119] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Solar Energy 2007;81:829–837. [CrossRef]
  • [120] Shahnazari MR, Lari HR. Modeling of a solar power plant in Iran. Energy Strateg Rev 2017;18:24–37. [CrossRef]
  • [121] Barron-Gafford GA, Minor RL, Alle NA, Cronin AD, Brooks AE, Pavao-Zuckerman M. The Photovoltaic Heat Island Effect: larger solar power plants increase local temperatures. Sci Rep 2016;6:35070. [CrossRef]
  • [122] Chacartegui R, de Escalona JMM, Sánchez D, Monje B, Sánchez T. Alternative cycles based on carbon dioxide for central receiver solar power plants. Appl Therm Engineer 2011;31:872–879. [CrossRef]
  • [123] Gasparovic I, Gasparovic M. Determining optimal solar power plant locations based on remote sensing and GIS methods : a case study from Croatia. Remote Sens 2019;11:1481. [CrossRef]
  • [124] Hossain MZ, Illias HA. Binary power generation system by utilizing solar energy in Malaysia. Ain Shams Engineer J 2022;13:101650. [CrossRef]
  • [125] Oró E, Gil A, de Gracia A, Boer D, Cabeza LF. Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew Energy 2021;44:166–173. [CrossRef]
  • [126] Emre M, Dincer I. Development and assessment of a solar driven trigeneration system with storage for electricity, ammonia and fresh water production. Energy Conver Manage 2021;245:114585. [CrossRef]
  • [127] Hossain MM, Ahmed NA, Shahriyar MA, Ehsan MM, Riaz F, Salehin S, et al. Analysis and optimization of a modified Kalina cycle system for low-grade heat utilization. Energy Conver Manage X 2021;12:100121. [CrossRef]
  • [128] Tukenmez N, Koc M, Ozturk M. A novel combined biomass and solar energy conversion-based multigeneration system with hydrogen and ammonia generation. Int J Hydrogen Energy 2021;46:16319–16343. [CrossRef]
  • [129] Ghorbani B, Ebrahimi A, Moradi M, Ziabasharhagh M. Continuous production of cryogenic energy at low-temperature using two-stage ejector cooling system, Kalina power cycle, cold energy storage unit , and photovoltaic system. Energy Conver Manage 2021;227:113541. [CrossRef]
  • [130] Delgado-Torres AM, García-Rodríguez L. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy Conver Manage 2010;51:2846–2856. [CrossRef]
  • [131] Singh OK, Kaushik SC. Reducing CO2 emission and improving exergy based performance of natural gas fired combined cycle power plants by coupling Kalina cycle. Energy 2013;55:1002–1013. [CrossRef]
  • [132] Ishaq H, Dincer I. Dynamic modelling of a solar hydrogen system for power and ammonia production. Int J Hydrogen Energy 2021;46:13985–14004. [CrossRef]
  • [133] Al-Hamed KHM, Dincer I. A new solar energy-based integrated carbon capturing system with a gas turbine-supercritical CO2 combined power cycle. Energy Conver Manage 2022;251:114999. [CrossRef]
  • [134] Valencia-Chapi R, Coco-Enríquez L, Muñoz-Antón J. Supercritical CO2 mixtures for advanced brayton power cycles in line-focusing solar power plants. Appl Sci 2019;10:55. [CrossRef]
  • [135] Bamisileet O, Mukhtar M, Yimen N, Huang Q, Olotu O, Adebayo V. Comparative performance analysis of solar powered supercritical-transcritical CO2 based systems for hydrogen production and multigeneration. Int J Hydrogen Energy 2021;46:26272–26288. [CrossRef]
  • [136] Dunham MT, Iverson BD. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew Sustain Energy Rev 2014;30:758–770. [CrossRef]
  • [137] Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation - a review. Renew Sustain Energy Rev 2013;20:430–442. [CrossRef]
  • [138] Rajashekara K. Hybrid fuel-cell strategies for clean power generation. IEEE Trans Ind Appl 2005;41:682–689. [CrossRef]
  • [139] Spinelli M, Di Bona D, Gatti M, Martelli E, Viganò F, Consonni S. Assessing the potential of molten carbonate fuel cell-based schemes for carbon capture in natural gas-fired combined cycle power plants J Power Sources 2020;448:227223. [CrossRef]
  • [140] Massardo AF, McDonald CF, Korakianitis T. Microturbine / fuel-cell coupling for generation microturbine / fuel-cell coupling for high- efficiency electrical-power generation. J Engineer Gas Turb Power 2022;124:110–116. [CrossRef]
  • [141] Lukas MD, Lee KY, Ghezel H. Modeling and cycling control of carbonate fuel cell power plants. Cont Engineer Prac 2002;10:197–206. [CrossRef]
  • [142] Ma L, Mao J, Marefati M. Assessment of a new coal-fired power plant integrated with solid oxide fuel cell and parabolic trough solar collector. Process Saf Environ Prot 2022;163:340–352. [CrossRef]
  • [143] Skjervold V. Nord LO. Increased flexibility of coal-fired power plant with moving bed temperature-swing adsorption CO2 capture by use of thermal energy storage. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4274960. Accessed Apr 29, 2024.
  • [144] Fan G, Dai Y. Thermo-economic optimization and part-load analysis of the combined supercritical CO2 and Kalina cycle. Energy Conver Manage 2021;245:114572. [CrossRef]
  • [145] Zeeshan M, Musharavati F, Khanmohammadi S, Pakseresht AH. Design and comparative exergy and exergo-economic analyses of a novel integrated Kalina cycle improved with fuel cell and thermoelectric module. Energy Conver Manage 2020;220:113081. [CrossRef]
  • [146] Pierobon L, Rokni M. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant with a Kalina Cycle. 2015;12:610–619. [CrossRef]
  • [147] Bombarda P, Invernizzi CM, Pietra C. Heat recovery from Diesel engines: a thermodynamic comparison between Kalina and ORC cycles. Appl Therm Engineer 2010;30:212–219. [CrossRef]
  • [148] Gholamian E, Zare V. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles. Energy Conver Manage 2016;117:150–161. [CrossRef]
  • [149] Ryu J, Ko A, Park SH, Park JP. Thermo-economic assessment of molten carbonate fuel cell hybrid system combined between individual sCO2 power cycle and district heating. Appl Therm Engineer 2020;169:114911. [CrossRef]
  • [150] Ahmadi MH, Mohammadi A, Pourfayaz F, Mehrpooya M, Bidi M, Valero A, et al. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. J Nat Gas Sci Engineer 2016;34:428–438. [CrossRef]
  • [151] Ahmadi MH, Sadaghiani MS, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic Rankine Cycle power plant with liquefied natural gas as heat sink. Entropy 2018;20;484. [CrossRef]
  • [152] Bae SJ, Ahn Y, Lee J, Lee JI. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J Power Sources 2014;270:608–618. [CrossRef]
  • [153] Hemmatabady H, Mehrpooya M, Mousavi SA. Development of a novel hybrid SOFC/GT system and transcritical CO2 cycle for CCHP purpose in the district scale. J Therm Anal Calorim 2020;147:489–507. [CrossRef]
  • [154] Jouybari AK, Ilinca A, Ghorbani B, Rooholamini S. Thermodynamic and exergy evaluation of an innovative hydrogen liquefaction structure based on ejector-compression refrigeration unit, cascade multi-component refrigerant system, and Kalina power plant. Int J Hydrogen Energy 2022;47:26369–26393. [CrossRef]
  • [155] Aksar M, Yağlı H, Koç Y, Koç A, Sohani A, Yumrutaş R. Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: a comparative and comprehensive case study for a cogeneration system. Energy Conver Manage 2022;265:115739. [CrossRef]
Toplam 155 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Derlemeler
Yazarlar

Ayoushi Srivastava Bu kişi benim 0009-0006-2183-3089

Mayank Maheshwari Bu kişi benim 0000-0001-5364-8685

Yayımlanma Tarihi 21 Mayıs 2024
Gönderilme Tarihi 3 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 3

Kaynak Göster

APA Srivastava, A., & Maheshwari, M. (2024). Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review. Journal of Thermal Engineering, 10(3), 790-810.
AMA Srivastava A, Maheshwari M. Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review. Journal of Thermal Engineering. Mayıs 2024;10(3):790-810.
Chicago Srivastava, Ayoushi, ve Mayank Maheshwari. “Thermodynamic Analysis of Solar Assisted Binary Vapour Cycle Using Ammonia-Water Mixture and Transcritical CO2: A Review”. Journal of Thermal Engineering 10, sy. 3 (Mayıs 2024): 790-810.
EndNote Srivastava A, Maheshwari M (01 Mayıs 2024) Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review. Journal of Thermal Engineering 10 3 790–810.
IEEE A. Srivastava ve M. Maheshwari, “Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review”, Journal of Thermal Engineering, c. 10, sy. 3, ss. 790–810, 2024.
ISNAD Srivastava, Ayoushi - Maheshwari, Mayank. “Thermodynamic Analysis of Solar Assisted Binary Vapour Cycle Using Ammonia-Water Mixture and Transcritical CO2: A Review”. Journal of Thermal Engineering 10/3 (Mayıs 2024), 790-810.
JAMA Srivastava A, Maheshwari M. Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review. Journal of Thermal Engineering. 2024;10:790–810.
MLA Srivastava, Ayoushi ve Mayank Maheshwari. “Thermodynamic Analysis of Solar Assisted Binary Vapour Cycle Using Ammonia-Water Mixture and Transcritical CO2: A Review”. Journal of Thermal Engineering, c. 10, sy. 3, 2024, ss. 790-1.
Vancouver Srivastava A, Maheshwari M. Thermodynamic analysis of solar assisted binary vapour cycle using ammonia-water mixture and transcritical CO2: A review. Journal of Thermal Engineering. 2024;10(3):790-81.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering