Araştırma Makalesi
BibTex RIS Kaynak Göster

LİMAN HİZMET KALASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHODİTESİ BOYUTLARININ FERMATEAN BULANIK AHP YÖNTEMİ İLE DEĞERLENDİRİLMESİ

Yıl 2023, Cilt: 22 Sayı: 44, 377 - 394, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1375982

Öz

İşletmelerin kalitesinin değerlendirilmesi ve buna bağlı olarak geliştirilmesi sürdürülebilir rekabet avantajı açısından kritik öneme sahiptir. Bu çalışma, küresel ticaretin gelişmesine önemli katkı sağlayan deniz limanlarının hizmet kalitesine etki eden boyutların değerlendirilmesine odaklanmaktadır. Bu nedenle bu makale Thai (2008) tarafından sunulan ROPMIS modelinin boyutlarının önem ağırlıklarını belirlemeyi amaçlamaktadır. Günümüz dünyasında Fermatean bulanık kümeler (FFSs), insan belirsizliğini ve öznelliğini daha iyi yakalama olasılığı nedeniyle birçok karar verme probleminde yararlı bir araçtır. ROPMIS modelinin boyutlarının ağırlıkları Fermatean bulanık ortamında AHP yöntemiyle belirlenir. Önerilen yaklaşım, boyutların ağırlıklarına ilişkin verilerdeki belirsizliklerin ve hataların yönetilmesinde etkili bir yöntemdir. Sürdürülebilir liman hizmet kalitesi üzerinde etkisi olabilecek küresel liman kalite boyutlarını değerlendirmek ve sıralamak için bir araç sağlamak amacıyla bu çalışma, daha sonraki araştırmalar için bir referans noktası görevi görmektedir.

Kaynakça

  • Abdullah, A. G., Shafii, M. A., Pramuditya, S., Setiadipura, T. & Anzhar, K. (2023). Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia. Energy and AI, 14, 100263.
  • Acciaro, M. (2015). Corporate responsibility and value creation in the port sector. International Journal of Logistics Research and Applications, 18(3), 291-311.
  • Agüero-Tobar, M. A., González-Araya, M. C. & González-Ramírez, R. G. (2023). Assessment of maritime operations efficiency and its economic impact based on data envelopment analysis: A case study of Chilean ports. Research in Transportation Business & Management, 46, 100821.
  • Alkan, N. & Kahraman, C. (2023). Prioritization of supply chain digital transformation strategies using multi-expert Fermatean fuzzy analytic hierarchy process. Informatica, 34(1), 1-33.
  • Atanassov, K.T. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20(1), 87-96.
  • Awasthi, A., Chauhan, S. S., Omrani, H. & Panahi, A. (2011). A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Computers & Industrial Engineering, 61(3), 637-646.
  • Bhattacharya, P., Mukhopadhyay, A., Saha, J., Samanta, B., Mondal, M., Bhattacharya, S. & Paul, S. (2023). Perception-satisfaction based quality assessment of tourism and hospitality services in the Himalayan region: An application of AHP-SERVQUAL approach on Sandakphu Trail, West Bengal, India. International Journal of Geoheritage and Parks, 11(2), 259-275.
  • Biswas, S., Pamucar, D., Kar, S. & Sana, S. S. (2021). A new integrated FUCOM–CODAS framework with fermatean fuzzy information for multi-criteria group decision-making. Symmetry, 13(12), 2430.
  • Botana, C., Fernández, E. & Feijoo, G. (2023). Towards a Green Port strategy: The decarbonisation of the Port of Vigo (NW Spain). Science of the Total Environment, 856, 159198.
  • Camci, A., Ertürk, M.E. & Gül, S. (2022). A novel Fermatean fuzzy analytic hierarchy process proposition and ıts usage for supplier selection problem in ındustry 4.0 transition. Garg, H. (eds) q-Rung Orthopair Fuzzy Sets. Springer, Singapore.
  • Celik, E. & Akyuz, E. (2018). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Ocean Engineering, 155, 371-381.
  • Chen, K. K., Chang, C. T. & Lai, C.S. (2009). Service quality gaps of business customers in the shipping industry. Transportation Research Part E: Logistics and Transportation Review, 45(1), 222-237.
  • Cho, C. H., Kim, B. I. & Hyun, J. H. (2010). A comparative analysis of the ports of Incheon and Shanghai: The cognitive service quality of ports, customer satisfaction, and post-behaviour. Total Quality Management, 21(9), 919-930.
  • Cronin, J. J. & Taylor, S. A. (1994). SERVPERF versus SERVQUAL: reconciling performance-based and perceptions-minus-expectations measurement of service quality. Journal of Marketing, 58(1), 125-131.
  • Cronin, J.J. & Taylor, S.A. (1992). Measuring service quality: A re-examination and extension. Journal of Marketing, 56(3), 55–68.
  • Dinçer, H., Yüksel, S. & Martínez, L. (2019). Analysis of balanced scorecard-based SERVQUAL criteria based on hesitant decision-making approaches. Computers & Industrial Engineering, 131, 1-12.
  • Ding, K., Choo, W.C., Ng, K.Y. & Ng, S.I. (2020). Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. International Journal of Hospitality Management, 91, 102676.
  • Grönroos, C. (1982). An applied service marketing theory. European journal of Marketing, 16(7), 30-41.
  • Guo, Y., Li, Y., Liu, D. & Xu, SX. (2023). Measuring service quality based on customer emotion: An explainable AI approach. Decision Support Systems, 114051, In Press.
  • Ha, M.S. (2003). A comparison of service quality at major container ports: Implications for Korean ports. Journal of Transport Geography, 11(2), 131-137.
  • Hemalatha, S., Dumpala, L. & Balakrishna, B. (2018). Service quality evaluation and ranking of container terminal operators through hybrid multi-criteria decision making methods. The Asian Journal of Shipping and Logistics, 34(2), 137-144.
  • Hsu, C. T., Chou, M. T. & Ding, J. F. (2023). Key factors for the success of smart ports during the post-pandemic era. Ocean & Coastal Management, 233, 106455.
  • Hu, Y. & Zhu, D. (2009). Empirical analysis of the worldwide maritime transportation network. Physica A: Statistical Mechanics and its Applications, 388(10), 2061-2071.
  • Ilbahar, E., Karaşan, A., Cebi, S. & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science, 103, 124-136.
  • Jiang, M., Zhao, S. & Jia, P. (2023). The spatial spillover effect of seaport capacity on export trade: Evidence from China pilot free trade zones. Ocean & Coastal Management, 245, 106879.
  • Karasan, A., Ilbahar, E., Cebi, S. & Kahraman, C. (2022). Customer-oriented product design using an integrated neutrosophic AHP & DEMATEL & QFD methodology. Applied Soft Computing, 118, 108445.
  • Keshavarz-Ghorabaee, M., Amiri, M., Hashemi-Tabatabaei, M., Zavadskas, E. K. & Kaklauskas, A. (2020). A new decision-making approach based on Fermatean fuzzy sets and WASPAS for green construction supplier evaluation. Mathematics, 8(12), 2202.
  • Kumar, A. & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954.
  • Kutlu Gündoğdu, F. & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent & Fuzzy Systems, 36(1), 337-352.
  • Kutlu Gündoğdu, F., Duleba, S., Moslem, S., & Aydın, S. (2021). Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Applied Soft Computing, 100, 106920.
  • Ladhari, R. (2009). A review of twenty years of SERVQUAL research. International Journal Of Quality and Service Sciences, 1(2), 172-198.
  • Li, D., Jiao, J., Wang, S. & Zhou, G. (2023). Supply Chain Resilience from the Maritime Transportation Perspective: A bibliometric analysis and research directions. Fundamental Research.
  • Liu, Y., Ma, X., Qiao, W., Ma, L. & Han, B. (2024). A novel methodology to model disruption propagation for resilient maritime transportation systems–a case study of the Arctic maritime transportation system. Reliability Engineering & System Safety, 241, 109620.
  • Liu, Q., Chen, J., Yang, K., Liu, D., He, L., Qin, Q. & Wang, Y. (2023). An integrating spherical fuzzy AHP and axiomatic design approach and its application in human–machine interface design evaluation. Engineering Applications of Artificial Intelligence, 125, 106746.
  • Liu, R., Cui, L., Zeng, G., Wu, H., Wang, C., Yan, S. & Yan, B. (2015). Applying the fuzzy SERVQUAL method to measure the service quality in certification & inspection industry. Applied Soft Computing, 26, 508-512.
  • Lupo, T. (2015). Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily. Journal of Air Transport Management, 42, 249-259.
  • Menekşe, A. & Akdağ, H. C. (2023). Medical waste disposal planning for healthcare units using spherical fuzzy CRITIC-WASPAS. Applied Soft Computing, 144, 110480.
  • Miremadi, A., Ghalamkari, S. & Sadeh, F. (2011). Customer satisfaction in port industry (A case study of Iranian shipping). International Conference on Sociality and Economics Development, 10, 58-62.
  • Mishra, A. R., Rani, P., Deveci, M., Gokasar, I., Pamucar, D. & Govindan, K. (2023). Interval-valued Fermatean fuzzy heronian mean operator-based decision-making method for urban climate change policy for transportation activities. Engineering Applications of Artificial Intelligence, 124, 106603.
  • Narasimha, P. T., Jena, P. R. & Majhi, R. (2021). Impact of COVID-19 on the Indian seaport transportation and maritime supply chain. Transport Policy, 110, 191-203.
  • Ocampo, L., Alinsub, J., Casul, R. A., Enquig, G., Luar, M., Panuncillon, N., ... & Ocampo, C. O. (2019). Public service quality evaluation with SERVQUAL and AHP-TOPSIS: A case of Philippine government agencies. Socio-Economic Planning Sciences, 68, 100604.
  • Othman, M. K., Rahman, N.S.F.A., Ismail, A., Osnin, N.A. & Hanafiah, R. M. (2023). Revisiting Malaysia’s port classification system in a complex operational environment to streamline the coordination and management of maritime ports. Case Studies on Transport Policy, 13, 101062.
  • Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50.
  • Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1988). SERVQUAL: A multiple item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
  • Park, R.K. & De, P. (2004). An alternative approach to efficiency measurement of seaports. Maritime Economics & Logistics, 6, 53-69.
  • Phan, T. M., Thai, V. V. & Vu, T. P. (2021). Port service quality (PSQ) and customer satisfaction: An exploratory study of container ports in Vietnam. Maritime Business Review, 6(1), 72-94.
  • Prati, M. V., Costagliola, M. A., Quaranta, F. & Murena, F. (2015). Assessment of ambient air quality in the port of Naples. Journal of the Air & Waste Management Association, 65(8), 970-979.
  • Roa, I., Peña, Y., Amante, B. & Goretti, M. (2013). Ports: Definition and study of types, sizes and business models. Journal of Industrial Engineering and Management (JIEM), 6(4), 1055-1064.
  • Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281.
  • Saaty, T.L. (1980). The analytic process: planning, priority setting, resources allocation. McGraw, New York.
  • Saaty, T.L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98.
  • Senapati, T. & Yager, R. R. (2019). Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Engineering Applications of Artificial Intelligence, 85, 112-121.
  • Senapati, T. & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.
  • Shu, Z., Torralba, M. H., Carrasco, R. A. & López, M.F.B. (2023). Assessing customer satisfaction of London luxury hotels with the AHP method and the SERVPERF scale: A case study of customer reviews on TripAdvisor. Procedia Computer Science, 221, 73-80.
  • Simić, V., Ivanović, I., Đorić, V. & Torkayesh, A.E. (2022). Adapting urban transport planning to the COVID-19 pandemic: An integrated fermatean fuzzy model. Sustainable Cities and Society, 79, 103669.
  • Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis. Amer. Res. Press.
  • Song, D. W. & Yeo, K.T. (2004). A competitive analysis of Chinese container ports using the analytic hierarchy process. Maritime Economics & Logistics, 6, 34-52.
  • Sun, Y., Zhou, X., Yang, C. & Huang, T. (2023). A visual analytics approach for multi-attribute decision making based on intuitionistic fuzzy AHP and UMAP. Information Fusion, 96, 269-280.
  • Talley, W.K. (2013). Maritime transportation research: topics and methodologies. Maritime Policy & Management, 40(7), 709-725.
  • Talley, W. K., Ng, M. & Marsillac, E. (2014). Port service chains and port performance evaluation. Transportation Research Part E: Logistics and Transportation Review, 69, 236-247.
  • Talley, W.K. & Ng, M. (2016). Port economic cost functions: A service perspective. Transportation Research Part E: Logistics and Transportation Review, 88, 1-10.
  • Talley, W.K. (2019). Note: Determinants of cargo port choices by cargo port service providers. Transportation Research Part E: Logistics and Transportation Review, 132, 48-50.
  • Thai, V.V. (2008). Service quality in maritime transport: Conceptual model and empirical evidence. Asia Pacific Journal of Marketing and Logistics, 20(4), 493-518.
  • Thai, V.V. (2016). The impact of port service quality on customer satisfaction: The case of Singapore. Maritime Economics & Logistics, 18, 458-475.
  • Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539.
  • Tumsekcali, E., Ayyildiz, E. & Taskin, A. (2021). Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL Model: P-SERVQUAL 4.0. Expert Systems with Applications, 186, 115757.
  • Ugboma, C., Ogwude, I. C., Ugboma, O. & Nnadi, K. (2007). Service quality and satisfaction measurements in Nigerian ports: An exploration. Maritime Policy & Management, 34(4), 331-346.
  • UNCTAD, (2023). Review of Maritime Transport 2023. Retrieved October 13, 2023 from https://unctad.org/system/files/official-document/rmt2023_en.pdf.
  • Viet, N.H. (2015). Service quality at the seaport system of saigon newport corporation. Int. J. Mark. Stud, 7(6), 145-154.
  • Yager, R., (2013). Pythagorean fuzzy subsets. Joint IFSA World Congress and NAFIPS Annual Meeting, (IFSA/NAFIPS) (2013), 57-61.
  • Yeo, G. T., Thai, V. V. & Roh, S.Y. (2015). An analysis of port service quality and customer satisfaction: The case of Korean container ports. The Asian Journal of Shipping and Logistics, 31(4), 437-447.
  • Zeithaml, V. A., Berry, L. L. & Parasuraman, A. (1993). The nature and determinants of customer expectations of service. Journal of The Academy of Marketing Science, 21, 1-12.
  • Zhou, C., Ma, N., Cao, X., Lee, L. H. & Chew, E.P. (2021). Classification and literature review on the integration of simulation and optimization in maritime logistics studies. IISE Transactions, 53(10), 1157-1176.

ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD

Yıl 2023, Cilt: 22 Sayı: 44, 377 - 394, 31.12.2023
https://doi.org/10.55071/ticaretfbd.1375982

Öz

Assessing the quality of businesses and improving them accordingly is critical for sustainable competitive advantage. This study focuses on evaluating the dimensions affecting the service quality of sea ports, which contribute significantly to the development of global trade. Therefore, this paper aims to determine the importance weights of the dimensions of the ROPMIS model presented by Thai (2008). In today's world, Fermatean fuzzy sets (FFSs) are a useful tool in many decision-making problems due to the possibility of better capturing human uncertainty and subjectivity. The weights of dimensions of the ROPMIS model are determined with AHP method under the Fermatean fuzzy environment. The suggested approach is an effective means of managing the ambiguities and errors in the data pertaining to the dimensions' weights. In order to provide a tool for assessing and ranking port global quality dimensions that may have an impact on sustainable port service quality, this study serves as a benchmark for subsequent research.

Kaynakça

  • Abdullah, A. G., Shafii, M. A., Pramuditya, S., Setiadipura, T. & Anzhar, K. (2023). Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia. Energy and AI, 14, 100263.
  • Acciaro, M. (2015). Corporate responsibility and value creation in the port sector. International Journal of Logistics Research and Applications, 18(3), 291-311.
  • Agüero-Tobar, M. A., González-Araya, M. C. & González-Ramírez, R. G. (2023). Assessment of maritime operations efficiency and its economic impact based on data envelopment analysis: A case study of Chilean ports. Research in Transportation Business & Management, 46, 100821.
  • Alkan, N. & Kahraman, C. (2023). Prioritization of supply chain digital transformation strategies using multi-expert Fermatean fuzzy analytic hierarchy process. Informatica, 34(1), 1-33.
  • Atanassov, K.T. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20(1), 87-96.
  • Awasthi, A., Chauhan, S. S., Omrani, H. & Panahi, A. (2011). A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Computers & Industrial Engineering, 61(3), 637-646.
  • Bhattacharya, P., Mukhopadhyay, A., Saha, J., Samanta, B., Mondal, M., Bhattacharya, S. & Paul, S. (2023). Perception-satisfaction based quality assessment of tourism and hospitality services in the Himalayan region: An application of AHP-SERVQUAL approach on Sandakphu Trail, West Bengal, India. International Journal of Geoheritage and Parks, 11(2), 259-275.
  • Biswas, S., Pamucar, D., Kar, S. & Sana, S. S. (2021). A new integrated FUCOM–CODAS framework with fermatean fuzzy information for multi-criteria group decision-making. Symmetry, 13(12), 2430.
  • Botana, C., Fernández, E. & Feijoo, G. (2023). Towards a Green Port strategy: The decarbonisation of the Port of Vigo (NW Spain). Science of the Total Environment, 856, 159198.
  • Camci, A., Ertürk, M.E. & Gül, S. (2022). A novel Fermatean fuzzy analytic hierarchy process proposition and ıts usage for supplier selection problem in ındustry 4.0 transition. Garg, H. (eds) q-Rung Orthopair Fuzzy Sets. Springer, Singapore.
  • Celik, E. & Akyuz, E. (2018). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Ocean Engineering, 155, 371-381.
  • Chen, K. K., Chang, C. T. & Lai, C.S. (2009). Service quality gaps of business customers in the shipping industry. Transportation Research Part E: Logistics and Transportation Review, 45(1), 222-237.
  • Cho, C. H., Kim, B. I. & Hyun, J. H. (2010). A comparative analysis of the ports of Incheon and Shanghai: The cognitive service quality of ports, customer satisfaction, and post-behaviour. Total Quality Management, 21(9), 919-930.
  • Cronin, J. J. & Taylor, S. A. (1994). SERVPERF versus SERVQUAL: reconciling performance-based and perceptions-minus-expectations measurement of service quality. Journal of Marketing, 58(1), 125-131.
  • Cronin, J.J. & Taylor, S.A. (1992). Measuring service quality: A re-examination and extension. Journal of Marketing, 56(3), 55–68.
  • Dinçer, H., Yüksel, S. & Martínez, L. (2019). Analysis of balanced scorecard-based SERVQUAL criteria based on hesitant decision-making approaches. Computers & Industrial Engineering, 131, 1-12.
  • Ding, K., Choo, W.C., Ng, K.Y. & Ng, S.I. (2020). Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. International Journal of Hospitality Management, 91, 102676.
  • Grönroos, C. (1982). An applied service marketing theory. European journal of Marketing, 16(7), 30-41.
  • Guo, Y., Li, Y., Liu, D. & Xu, SX. (2023). Measuring service quality based on customer emotion: An explainable AI approach. Decision Support Systems, 114051, In Press.
  • Ha, M.S. (2003). A comparison of service quality at major container ports: Implications for Korean ports. Journal of Transport Geography, 11(2), 131-137.
  • Hemalatha, S., Dumpala, L. & Balakrishna, B. (2018). Service quality evaluation and ranking of container terminal operators through hybrid multi-criteria decision making methods. The Asian Journal of Shipping and Logistics, 34(2), 137-144.
  • Hsu, C. T., Chou, M. T. & Ding, J. F. (2023). Key factors for the success of smart ports during the post-pandemic era. Ocean & Coastal Management, 233, 106455.
  • Hu, Y. & Zhu, D. (2009). Empirical analysis of the worldwide maritime transportation network. Physica A: Statistical Mechanics and its Applications, 388(10), 2061-2071.
  • Ilbahar, E., Karaşan, A., Cebi, S. & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science, 103, 124-136.
  • Jiang, M., Zhao, S. & Jia, P. (2023). The spatial spillover effect of seaport capacity on export trade: Evidence from China pilot free trade zones. Ocean & Coastal Management, 245, 106879.
  • Karasan, A., Ilbahar, E., Cebi, S. & Kahraman, C. (2022). Customer-oriented product design using an integrated neutrosophic AHP & DEMATEL & QFD methodology. Applied Soft Computing, 118, 108445.
  • Keshavarz-Ghorabaee, M., Amiri, M., Hashemi-Tabatabaei, M., Zavadskas, E. K. & Kaklauskas, A. (2020). A new decision-making approach based on Fermatean fuzzy sets and WASPAS for green construction supplier evaluation. Mathematics, 8(12), 2202.
  • Kumar, A. & Pant, S. (2023). Analytical hierarchy process for sustainable agriculture: An overview. MethodsX, 10, 101954.
  • Kutlu Gündoğdu, F. & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent & Fuzzy Systems, 36(1), 337-352.
  • Kutlu Gündoğdu, F., Duleba, S., Moslem, S., & Aydın, S. (2021). Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Applied Soft Computing, 100, 106920.
  • Ladhari, R. (2009). A review of twenty years of SERVQUAL research. International Journal Of Quality and Service Sciences, 1(2), 172-198.
  • Li, D., Jiao, J., Wang, S. & Zhou, G. (2023). Supply Chain Resilience from the Maritime Transportation Perspective: A bibliometric analysis and research directions. Fundamental Research.
  • Liu, Y., Ma, X., Qiao, W., Ma, L. & Han, B. (2024). A novel methodology to model disruption propagation for resilient maritime transportation systems–a case study of the Arctic maritime transportation system. Reliability Engineering & System Safety, 241, 109620.
  • Liu, Q., Chen, J., Yang, K., Liu, D., He, L., Qin, Q. & Wang, Y. (2023). An integrating spherical fuzzy AHP and axiomatic design approach and its application in human–machine interface design evaluation. Engineering Applications of Artificial Intelligence, 125, 106746.
  • Liu, R., Cui, L., Zeng, G., Wu, H., Wang, C., Yan, S. & Yan, B. (2015). Applying the fuzzy SERVQUAL method to measure the service quality in certification & inspection industry. Applied Soft Computing, 26, 508-512.
  • Lupo, T. (2015). Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily. Journal of Air Transport Management, 42, 249-259.
  • Menekşe, A. & Akdağ, H. C. (2023). Medical waste disposal planning for healthcare units using spherical fuzzy CRITIC-WASPAS. Applied Soft Computing, 144, 110480.
  • Miremadi, A., Ghalamkari, S. & Sadeh, F. (2011). Customer satisfaction in port industry (A case study of Iranian shipping). International Conference on Sociality and Economics Development, 10, 58-62.
  • Mishra, A. R., Rani, P., Deveci, M., Gokasar, I., Pamucar, D. & Govindan, K. (2023). Interval-valued Fermatean fuzzy heronian mean operator-based decision-making method for urban climate change policy for transportation activities. Engineering Applications of Artificial Intelligence, 124, 106603.
  • Narasimha, P. T., Jena, P. R. & Majhi, R. (2021). Impact of COVID-19 on the Indian seaport transportation and maritime supply chain. Transport Policy, 110, 191-203.
  • Ocampo, L., Alinsub, J., Casul, R. A., Enquig, G., Luar, M., Panuncillon, N., ... & Ocampo, C. O. (2019). Public service quality evaluation with SERVQUAL and AHP-TOPSIS: A case of Philippine government agencies. Socio-Economic Planning Sciences, 68, 100604.
  • Othman, M. K., Rahman, N.S.F.A., Ismail, A., Osnin, N.A. & Hanafiah, R. M. (2023). Revisiting Malaysia’s port classification system in a complex operational environment to streamline the coordination and management of maritime ports. Case Studies on Transport Policy, 13, 101062.
  • Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50.
  • Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1988). SERVQUAL: A multiple item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
  • Park, R.K. & De, P. (2004). An alternative approach to efficiency measurement of seaports. Maritime Economics & Logistics, 6, 53-69.
  • Phan, T. M., Thai, V. V. & Vu, T. P. (2021). Port service quality (PSQ) and customer satisfaction: An exploratory study of container ports in Vietnam. Maritime Business Review, 6(1), 72-94.
  • Prati, M. V., Costagliola, M. A., Quaranta, F. & Murena, F. (2015). Assessment of ambient air quality in the port of Naples. Journal of the Air & Waste Management Association, 65(8), 970-979.
  • Roa, I., Peña, Y., Amante, B. & Goretti, M. (2013). Ports: Definition and study of types, sizes and business models. Journal of Industrial Engineering and Management (JIEM), 6(4), 1055-1064.
  • Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281.
  • Saaty, T.L. (1980). The analytic process: planning, priority setting, resources allocation. McGraw, New York.
  • Saaty, T.L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98.
  • Senapati, T. & Yager, R. R. (2019). Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Engineering Applications of Artificial Intelligence, 85, 112-121.
  • Senapati, T. & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.
  • Shu, Z., Torralba, M. H., Carrasco, R. A. & López, M.F.B. (2023). Assessing customer satisfaction of London luxury hotels with the AHP method and the SERVPERF scale: A case study of customer reviews on TripAdvisor. Procedia Computer Science, 221, 73-80.
  • Simić, V., Ivanović, I., Đorić, V. & Torkayesh, A.E. (2022). Adapting urban transport planning to the COVID-19 pandemic: An integrated fermatean fuzzy model. Sustainable Cities and Society, 79, 103669.
  • Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis. Amer. Res. Press.
  • Song, D. W. & Yeo, K.T. (2004). A competitive analysis of Chinese container ports using the analytic hierarchy process. Maritime Economics & Logistics, 6, 34-52.
  • Sun, Y., Zhou, X., Yang, C. & Huang, T. (2023). A visual analytics approach for multi-attribute decision making based on intuitionistic fuzzy AHP and UMAP. Information Fusion, 96, 269-280.
  • Talley, W.K. (2013). Maritime transportation research: topics and methodologies. Maritime Policy & Management, 40(7), 709-725.
  • Talley, W. K., Ng, M. & Marsillac, E. (2014). Port service chains and port performance evaluation. Transportation Research Part E: Logistics and Transportation Review, 69, 236-247.
  • Talley, W.K. & Ng, M. (2016). Port economic cost functions: A service perspective. Transportation Research Part E: Logistics and Transportation Review, 88, 1-10.
  • Talley, W.K. (2019). Note: Determinants of cargo port choices by cargo port service providers. Transportation Research Part E: Logistics and Transportation Review, 132, 48-50.
  • Thai, V.V. (2008). Service quality in maritime transport: Conceptual model and empirical evidence. Asia Pacific Journal of Marketing and Logistics, 20(4), 493-518.
  • Thai, V.V. (2016). The impact of port service quality on customer satisfaction: The case of Singapore. Maritime Economics & Logistics, 18, 458-475.
  • Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539.
  • Tumsekcali, E., Ayyildiz, E. & Taskin, A. (2021). Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL Model: P-SERVQUAL 4.0. Expert Systems with Applications, 186, 115757.
  • Ugboma, C., Ogwude, I. C., Ugboma, O. & Nnadi, K. (2007). Service quality and satisfaction measurements in Nigerian ports: An exploration. Maritime Policy & Management, 34(4), 331-346.
  • UNCTAD, (2023). Review of Maritime Transport 2023. Retrieved October 13, 2023 from https://unctad.org/system/files/official-document/rmt2023_en.pdf.
  • Viet, N.H. (2015). Service quality at the seaport system of saigon newport corporation. Int. J. Mark. Stud, 7(6), 145-154.
  • Yager, R., (2013). Pythagorean fuzzy subsets. Joint IFSA World Congress and NAFIPS Annual Meeting, (IFSA/NAFIPS) (2013), 57-61.
  • Yeo, G. T., Thai, V. V. & Roh, S.Y. (2015). An analysis of port service quality and customer satisfaction: The case of Korean container ports. The Asian Journal of Shipping and Logistics, 31(4), 437-447.
  • Zeithaml, V. A., Berry, L. L. & Parasuraman, A. (1993). The nature and determinants of customer expectations of service. Journal of The Academy of Marketing Science, 21, 1-12.
  • Zhou, C., Ma, N., Cao, X., Lee, L. H. & Chew, E.P. (2021). Classification and literature review on the integration of simulation and optimization in maritime logistics studies. IISE Transactions, 53(10), 1157-1176.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çok Ölçütlü Karar Verme
Bölüm Araştırma Makaleleri
Yazarlar

Veysel Tatar 0000-0003-4285-6854

Erken Görünüm Tarihi 12 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 14 Ekim 2023
Kabul Tarihi 27 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 22 Sayı: 44

Kaynak Göster

APA Tatar, V. (2023). ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 22(44), 377-394. https://doi.org/10.55071/ticaretfbd.1375982
AMA Tatar V. ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2023;22(44):377-394. doi:10.55071/ticaretfbd.1375982
Chicago Tatar, Veysel. “ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22, sy. 44 (Aralık 2023): 377-94. https://doi.org/10.55071/ticaretfbd.1375982.
EndNote Tatar V (01 Aralık 2023) ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22 44 377–394.
IEEE V. Tatar, “ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 44, ss. 377–394, 2023, doi: 10.55071/ticaretfbd.1375982.
ISNAD Tatar, Veysel. “ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22/44 (Aralık 2023), 377-394. https://doi.org/10.55071/ticaretfbd.1375982.
JAMA Tatar V. ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22:377–394.
MLA Tatar, Veysel. “ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 44, 2023, ss. 377-94, doi:10.55071/ticaretfbd.1375982.
Vancouver Tatar V. ASSESSING PORT SERVICE QUALITY DIMENSIONS WITH FERMATEAN FUZZY AHP METHOD. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22(44):377-94.