Surface improvement of 42CrMo4 low alloy steel via nitrocarburization and electroless Ni-P plating: enhancing the surface hardness
Yıl 2024,
Cilt: 7 Sayı: 1, 18 - 21, 30.06.2024
Uğur Temel Yıldız
,
Temel Varol
,
Burak Berk Day
,
Büşra Kandemir
,
Furkan Alptekin
,
Ahmet Fuat Günaçar
Öz
This investigation endeavors to enhance the surface characteristics of 42CrMo4 low alloy steel, a material of considerable prominence within the defense industry, and particularly in the context of handgun production. The augmentation is pursued through the implementation of nitrocarburization and electroless Ni-P plating processes. Commencing with 42CrMo4 steel samples characterized by an initial hardness of 303.4±12.3 HV0.1, the specimens underwent a meticulous nitrocarburization procedure. The resultant nitrocarburized surface was subject to characterization via microhardness measurements adhering to the DIN 50190 standard, revealing pertinent hardness and diffusion depth values of 566 HV0.1 and 132.60 µm, respectively. The electroless Ni-P plating was executed over a 45-minute duration at 90⁰C, employing proprietary chemicals. Post-plating, the samples underwent heat treatment at 250⁰C for durations of 4 and 8 hours, strategically designed to optimize the hardness of the electroless Ni-P plating. Coating thickness and microhardness assessments were conducted leveraging a metallurgical microscope and a Vickers hardness tester. Observed coating thicknesses ranged from 10.91 µm to 14.81 µm. The initial hardness of the electroless Ni-P plating, as measured, stood at 563±33 HV0.01. Subsequent heat treatments at 250⁰C for 4 and 8 hours resulted in an appreciable augmentation of the coating hardness to 715±24 HV0.01 and 852±42 HV0.01, respectively. In summation, the electroless Ni-P plating process manifested a notable elevation in the initial hardness of 42CrMo4 low alloy steel from 303.4±12.3 HV0.1 to 852±42 HV0.01 on the surface. Concurrently, the nitrocarburization process engendered a gradual decline in hardness from 566 HV0.1 to core hardness, spanning a distance of 132.60 µm from the surface. This symbiotic integration results in a composite structure characterized by a resilient and wear-resistant surface superimposed with a subsurface conducive to sustaining the hardened coating.
Destekleyen Kurum
Scientific and Technological Research Council of Turkey (TÜBİTAK) and Trabzon Arms Industry
Proje Numarası
TÜBİTAK Project Number:119C073
Teşekkür
The completion of this study was made possible through the support extended by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and Trabzon Arms Industry (TİSAŞ) under the framework of the 2244 Industry-Academy Cooperation Program, specifically project number 119C073. The authors extend their sincere appreciation to TÜBİTAK and Trabzon Arms Industry for their invaluable support throughout this research endeavor.
Kaynakça
- Boßlet, J., Kreutz, M., Tenifer-QPQ-Verfahren, Mannheim, Durferrit GmbH, 2017
- Babul, T., Nakonieczny, A., Senatorski, J., Structure and properties of nitrocarburized diffusion layers generated on high-speed steels. J. of Materi Eng and Perform, 2003, 12, 696–700
- Elhadj, G., Tahar, H.M., Djebaili, H., Effect of salt bath nitriding on surface roughness behaviour of AISI 4140 steel, Acta Metallurgica Slovaca, 2017, 23(1): 45-54
- Du, H., Somers, M.A.J., Agren, J. Microstructural and compositional evolution of compound layers during gaseous nitrocarburizing, Metall Mater Trans A, 2000, 31, 195–211
- Lampe, T., Eisenberg, S., Laudien G., Compound Layer Formation During Plasma Nitriding and Plasma Nitrocarburising, Surface Engineering, 1993, 9(1):69-76
- Totten, G.E., Steel heat Treatment; Metallurgy and Technologies 2. edition, 2006
- Fares, M.L., Touhami, M., Belaid, M., Bruyas, H. Surface characteristics analysis of nitrocarburized (Tenifer) and carbonitrided industrial steel AISI 02 types, Surface and Interface Analysis, 2009, 41, 179 – 186
- Sohi, M.H., Ebrahimi, M., Raouf, A.H., Mahboubi, F., Comparative study of the corrosion behaviour of plasma nitrocarburised AISI 4140 steel before and after post-oxidation, Materials & Design, 2010, 31(9): 4432-4437
- Brenner, A., Riddel, G.E., Nickel Plating on Steel by Chemical Reduction, Journal of Research of the National Bureau of Standards, 1946, 37(1):3134
- Schlesinger, M., and Paunovic, M., Modern Electroplating., 5th ed. Hoboken N.J: Wiley, 2010
- Loto, C.A., Electroless Nickel Plating – A Review, Silicon, 2016, 8, 177–186
- Bernasconi, R., Natale, G.V., Levi, M., Magagnin, L. Electroless plating of NiP and Cu on polylactic acid and polyethylene terephthalate glycol-modified for 3D printed flexible, Journal of The Electrochemical Society, 2016, 163(9):D526
- Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., Roussel, S., Palacin, S., ABS Polymer Electroless Plating through a One-Step Poly(acrylic acid) Covalent Grafting, ACS Applied Materials & Interfaces, 2010, 2(4):1177-1183
- Avelar-Batista, J.C., Spain, E., Letch, M., Housden, J., Beechey, R., Improvements on the wear resistance of high thermal conductivity Cu alloys using an electroless Ni–P coating prior to PVD deposition, Surface and Coatings Technology, 2006, 201(7):4052-4057
- Anijdan, S.H., Sabzi, M., Zadeh, M.R., Farzam, M., The Effect of Electroless Bath Parameters and Heat Treatment on the Properties of Ni-P and Ni-P-Cu Composite Coatings. Materials Research-ibero-american Journal of Materials, 2018, 21
- DIN EN 10083-3 Steels for quenching and tempering- Part 3: Technical delivery conditions for alloy steels English Version of DIN EN 10083-3:2007-01, DIN Deutsches Institut für Normung e.V., Berlin Germany, 2007
- DIN 50190-3, Hartetiefe warmebehandelter Teile, Ermittung der Nitrierharteteife, DIN Deutsches Institut für Normung e.V., Berlin, Germany, 1979
- Doan, V., Kusmic, D., Pospíchal, M., Tran, Q., Nguyen, V., Friction and Wear Behaviour of 42CrMo4 Steel Treated by Tenifer, Hard Chrome and Plasma Nitriding Technologies. Manufacturing Technology, 2017, 17, 168-174
- Apachitei, I., Duszczyk, J., Katgerman, L., Overkamp, P.J.B., Electroless Ni–P Composite Coatings: The Effect of Heat Treatment on the Microhardness of Substrate and Coating, Scripta Materialia, 1998, 38(9): 1347-1353
- Baudrand, D.W., Electroless Nickel Plating, Surface Engineering, Vol 5, ASM Handbook, Edited By. Cotell, C.M., Sprague, J.A., F.A., Smidt, Jr., ASM International, 1994, 290–310
Yıl 2024,
Cilt: 7 Sayı: 1, 18 - 21, 30.06.2024
Uğur Temel Yıldız
,
Temel Varol
,
Burak Berk Day
,
Büşra Kandemir
,
Furkan Alptekin
,
Ahmet Fuat Günaçar
Proje Numarası
TÜBİTAK Project Number:119C073
Kaynakça
- Boßlet, J., Kreutz, M., Tenifer-QPQ-Verfahren, Mannheim, Durferrit GmbH, 2017
- Babul, T., Nakonieczny, A., Senatorski, J., Structure and properties of nitrocarburized diffusion layers generated on high-speed steels. J. of Materi Eng and Perform, 2003, 12, 696–700
- Elhadj, G., Tahar, H.M., Djebaili, H., Effect of salt bath nitriding on surface roughness behaviour of AISI 4140 steel, Acta Metallurgica Slovaca, 2017, 23(1): 45-54
- Du, H., Somers, M.A.J., Agren, J. Microstructural and compositional evolution of compound layers during gaseous nitrocarburizing, Metall Mater Trans A, 2000, 31, 195–211
- Lampe, T., Eisenberg, S., Laudien G., Compound Layer Formation During Plasma Nitriding and Plasma Nitrocarburising, Surface Engineering, 1993, 9(1):69-76
- Totten, G.E., Steel heat Treatment; Metallurgy and Technologies 2. edition, 2006
- Fares, M.L., Touhami, M., Belaid, M., Bruyas, H. Surface characteristics analysis of nitrocarburized (Tenifer) and carbonitrided industrial steel AISI 02 types, Surface and Interface Analysis, 2009, 41, 179 – 186
- Sohi, M.H., Ebrahimi, M., Raouf, A.H., Mahboubi, F., Comparative study of the corrosion behaviour of plasma nitrocarburised AISI 4140 steel before and after post-oxidation, Materials & Design, 2010, 31(9): 4432-4437
- Brenner, A., Riddel, G.E., Nickel Plating on Steel by Chemical Reduction, Journal of Research of the National Bureau of Standards, 1946, 37(1):3134
- Schlesinger, M., and Paunovic, M., Modern Electroplating., 5th ed. Hoboken N.J: Wiley, 2010
- Loto, C.A., Electroless Nickel Plating – A Review, Silicon, 2016, 8, 177–186
- Bernasconi, R., Natale, G.V., Levi, M., Magagnin, L. Electroless plating of NiP and Cu on polylactic acid and polyethylene terephthalate glycol-modified for 3D printed flexible, Journal of The Electrochemical Society, 2016, 163(9):D526
- Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., Roussel, S., Palacin, S., ABS Polymer Electroless Plating through a One-Step Poly(acrylic acid) Covalent Grafting, ACS Applied Materials & Interfaces, 2010, 2(4):1177-1183
- Avelar-Batista, J.C., Spain, E., Letch, M., Housden, J., Beechey, R., Improvements on the wear resistance of high thermal conductivity Cu alloys using an electroless Ni–P coating prior to PVD deposition, Surface and Coatings Technology, 2006, 201(7):4052-4057
- Anijdan, S.H., Sabzi, M., Zadeh, M.R., Farzam, M., The Effect of Electroless Bath Parameters and Heat Treatment on the Properties of Ni-P and Ni-P-Cu Composite Coatings. Materials Research-ibero-american Journal of Materials, 2018, 21
- DIN EN 10083-3 Steels for quenching and tempering- Part 3: Technical delivery conditions for alloy steels English Version of DIN EN 10083-3:2007-01, DIN Deutsches Institut für Normung e.V., Berlin Germany, 2007
- DIN 50190-3, Hartetiefe warmebehandelter Teile, Ermittung der Nitrierharteteife, DIN Deutsches Institut für Normung e.V., Berlin, Germany, 1979
- Doan, V., Kusmic, D., Pospíchal, M., Tran, Q., Nguyen, V., Friction and Wear Behaviour of 42CrMo4 Steel Treated by Tenifer, Hard Chrome and Plasma Nitriding Technologies. Manufacturing Technology, 2017, 17, 168-174
- Apachitei, I., Duszczyk, J., Katgerman, L., Overkamp, P.J.B., Electroless Ni–P Composite Coatings: The Effect of Heat Treatment on the Microhardness of Substrate and Coating, Scripta Materialia, 1998, 38(9): 1347-1353
- Baudrand, D.W., Electroless Nickel Plating, Surface Engineering, Vol 5, ASM Handbook, Edited By. Cotell, C.M., Sprague, J.A., F.A., Smidt, Jr., ASM International, 1994, 290–310