Year 2025,
Volume: 9 Issue: 2, 65 - 75, 29.08.2025
Oya Özuluğ
,
İrem Şarlak
,
Fahrettin Sarcan
,
Özgün Deniz Yürekli
,
Nilgün Kaya
,
Doğan Çetin
Project Number
FBG-2022-38573
References
-
Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12-22. https://doi.org/10.1016/j.marpolbul. 2017.01.082 google scholar
-
Andreassen E (1999) Infrared and Raman spectroscopy of polypropylene. Polypropylene. Springer, Berlin, pp 320–328 google scholar
-
Arthur, C., Baker, J. E. & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. https://repository.library. noaa.gov/view/noaa/2509/noaa_2509_DS1.pdf google scholar
-
Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 google scholar
-
Besley, A., Vijver M. G., Behrens P. & Bosker T. (2017). A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Marine Pollution Bulletin, 114(1), 77-83. https://doi.org/10.1016/j.marpolbul.2016.08.055 google scholar
-
Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F. & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068-7074. https://doi.org/10.1021/ acs.est.9b01517 google scholar
-
Çullu, A. F., Sönmez, V. Z. & Sivri, N. (2021). Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea google scholar
-
(Turkey): Sources and areal distribution. Environmental Pollution, 268, 115801. https://doi.org/10.1016/j.envpol.2020.115801 google scholar
-
De-la-Torre, G.E. (2019). Microplastics: an emerging threat to food security and human health. Journal of Food Science and Technology, 57(5), 1601-1608. https://doi.org/10.1007/s13197-019-04138-1 google scholar
-
Dong, Y., Gao, M., Song, Z. & Qiu, W. (2020). As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 239, 124792. https://doi.org/10.1016/j.chemosphere. 2019.124792 google scholar
-
Feng, Z., Zheng, L. & Liu, J. (2023). Classification of household microplastics using a multi-model approach based on Raman spectroscopy. Chemosphere 325, 138312. https://doi.org/10.1016/j.chemosphere. 2023.138312 google scholar
-
Gao, F., Li, J., Sun, C., Zhang, L., Jiang, F., Cao, W., & Zheng, L. (2019). Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin, 144, 61-67. https://doi.org/10.1016/j.marpolbul.2019.04.039 google scholar
-
Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances 3(7), 1-5. https://doi.org/ 10.1126/sciadv.1700782 google scholar
-
Habib, R. Z., Kindi, R. A., Salem, F. A., Kittaneh, W. F., Poulose, V., Iftikhar, S. H., Mourad, A., & Thiemann, T. (2021). Microplastic contamination of chicken meat and fish through plastic cutting boards. International Journal of Environmental Research and Public Health, 19(20), 13442. https://doi.org/10.3390/ijerph192013442 google scholar
-
Habib, R. Z., Poulose, V., Alsaidi, R., Al Kendi, R., Iftikhar, S. H., Mourad, A. H. I., Kittaneh, W. F. & Thiemann, T. (2022). Plastic cutting boards as a source of microplastics in meat. Food Additives & Contaminants: Part A. 27, 1-11. https://doi.org/10.1080/19440049.2021.2017002 google scholar
-
Ivleva, N. P., Wiesheu, A. C. & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56(7), 1720-1739. https://doi.org/10.1002/anie.201606957 google scholar
-
Koelmans, A. A., Besseling, E., Wegner, A. & Foekema, E. M. (2013). Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environmental Science & Technology, 47(14), 7812-7820. https://doi.org/ 10.1021/es401169n google scholar
-
Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Chen, M., & Zhao, Y. (2019). Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis. Science of The Total Environment, 685, 836-846. https://doi.org/10.1016/j.scitotenv.2019.06.265 google scholar
-
Lopes, C., Fernández-González, V., Muniategui-Lorenzo, S., Caetano, M. & Raimundo, J. (2022). Improved methodology for microplastic extraction from gastrointestinal tracts of fat fish species. Marine Pollution Bulletin, 181, 113911. https://doi.org/10.1016/j.marpolbul. 2022.113911 google scholar
-
Lu, L., Luo, T., Zhao, Y., Cai, C., Fu, Z. & Jin, Y. (2019). Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Science of The Total Environment, 667, 94-100. https://doi.org/10.1016/j. scitotenv.2019.02.380 google scholar
-
Ludwig, V., Da Costa Ludwig, Z. M., Rodrigues, M. M., Anjos, V., Costa, C. B., das Dores, D. R. S. A, da Silva V. R. & Soares, F. (2018). Analysis by Raman and infrared spectroscopy combined with theoretical studies on the identification of plasticizer in PVC films. Vibrational Spectroscopy, 98, 134-138. https://doi.org/10.1016/j.vibspec. 08.004 google scholar
-
Luo, Y., Chuah C., Amin, Md. A., Khoshyan, A., Gibson, C. T., Tang, Y., Naidu, R. & Fang., C. (2022). Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. Journal of Hazardous Materials, 431, 128636. https://doi.org/10.1016/j.jhazmat.2022.128636 google scholar
-
Luqman, A., Nugrahapraja, H., Wahyuono, R. A., İslami, I., Haekal, M. H., Fardiansyah, Y., Putri, B. Q., Amalludin, F. I., Rofiqa, E. A., Götz, F. & Wibowo, A. T. (2021). Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments, 8(12), 138. https://doi.org/10. 3390/environments8120138 google scholar
-
Lusher, A. Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. (2017). Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and recommendations for future monitoring of microplastics (R & D-project). 87. Published online December 1, Accessed June 15, 2024. http://hdl.handle.net/11250/2470297 google scholar
-
Meyers, N., Catarino, A. I., Declercq, A. M., Brenan, A., Devriese, L., Vandegehuchte, M., Witte, B, Janssen, C. & Everaert, G. (2022). Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Science of The Total Environment, 823, 153441. https://doi.org/10. 1016/j.scitotenv.2022.153441 google scholar
-
Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131-139. https://doi.org/10.1016/j.envres.2008.07.025 google scholar
-
Nava, V., Frezzotti, M. L. & Leoni, B. (2021). Raman spectroscopy for the analysis of microplastics in aquatic systems. Applied Spectroscopy, 75(11), 1341-1357. https://doi.org/10.1177/00037028211043119 google scholar
-
Plastics Europe (2023). https://plasticseurope.org/knowledge-hub/ plastics-the-fast-facts-2023/ google scholar
-
Pongon, M. & Owen, A. (2020). Presence of microplastics in Ephemeroptera, Plecoptera, and Trichoptera of North Cascades National Park. Scholars Week. Published online May 18, 2020. Accessed June 15, 2024. https://cedar.wwu.edu/scholwk/2020/2020/ 72 google scholar
-
Prata, J. C., Reis, V., Matos, J. T. V., da Costa, J. P., Duarte, A. C. & RochaSantos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of The Total Environment, 690, 1277-1283. https://doi.org/ 10.1016/j.scitotenv.2019.07.060 google scholar
-
Prata, J. C., Castro, J. L., da Costa, J. P., Duarte, A. C., Rocha-Santos, T. & Cerqueira, M. (2020). The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Marine Pollution Bulletin, 159, 111522. https://doi.org/10.1016/j.marpolbul.2020. 111522 google scholar
-
Prata, J. C., Sequeira, I. F., Monteiro, S. S., Silva, A. L. P., da Costa, J. P., Dias-Pereira, P., Fernandes, A.J.S., da Costa, F. M., Duarte, A. C. & RochaSantos, T. (2021). Preparation of biological samples for microplastic identification by Nile Red. Science of The Total Environment, 783, 147065. https://doi.org/10.1016/j.scitotenv.2021.147065 google scholar
-
Rainieri, S. & Barranco, A. (2019). Microplastics, a food safety issue? Trends in Food Science & Technology, 84, 55-57. https://doi.org/10. 1016/j.tifs.2018.12.009 google scholar
-
Sarcan, F., Dönmez, Ö., Kara, K., Erol, A., Akalın, E, Arıkan, M. Ç., Makhloufi, H., Arnoult, A. & Fontaine, C. (2014). Bismuth-induced effects on google scholar
-
optical, lattice vibrational, and structural properties of bulk GaAsBi alloys. Nanoscale Research Letters, 9, 119. https://doi.org/10.1186/ 1556-276x-9-119 google scholar
-
Sarcan, F., Fairbairn, N. J., Zotev, P., Severs-Millard, T., Gillard, D. J., Wang, X., Conran, B., Heuken, M, Erol, A., Tartakovskii, A. I., Krauss, T. F., Hedley, G. J. & Wang, Y. (2023). Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS2 using focused ion beam. npj 2D Materials and Applications, 7, 23. https://doi.org/10.1038/s41699-023-00386-0 google scholar
-
Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of The Total Environment, 733, 139338. https://doi.org/10.1016/j.scitotenv.2020.139338 google scholar
-
Tamargo, A., Molinero, N., Reinosa, J. J., Alcolea-Rodriguez, V., Portela, R., Bañares, M. A., … & Moreno-Arribas, M. V. (2022). PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Scientific Reports 12(1), 528. google scholar
-
Tirkey, A. & Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Marine Pollution Bulletin, 170, 112604. https://doi.org/10.1016/j.marpolbul. 2021.112604 google scholar
-
Tong, N., Zhu, C.-j., Song, L.-x., Zhang, C.-h., Zhang, G.-q., Zhang, Y.-x., 2016. Characteristics of Raman spectra of polyethylene terephthalate. Spectrosc. Spectr. Anal. 36 (1), 114–118. google scholar
-
Udovicki, B., Andjelkovic, M., Cirkovic-Velickovic, T. & Rajkovic A. (2022). Microplastics in food: scoping review on health effects, occurrence, and human exposure. International Journal of Food Contamination, 9, 7. https://doi.org/10.1186/s40550-022-00093-6 google scholar
-
Wang, Y. F., Wang, X. Y., Chen, B. J., Yang, Y. P., Li, H., & Wang, F. (2025). Impact of microplastics on the human digestive system: From basic to clinical. World Journal of Gastroenterology, 31(4), 100470. google scholar
-
Wang, P. Y., Zhao, Z. Y., Xiong, X. B., Wang, N., Zhou, R., Zhang, Z. M., Ding, F., Hao, M., Wang, S., Ma, S., Uzamurera, A. G., Xiao K., Khan, A., Tao, Ş.T., Wang, W.Y., Tao, H.Y., Xiong, Y. C. (2023). Microplastics affect soil bacterial community assembly more by their shapes rather than the concentrations. Water Research, 245, 120581. google scholar
-
Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T. & Reemtsma, T. (2018). Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Research, 139, 83-100. https://doi.org/10.1016/j.watres.2018. 03.051 google scholar
-
Xie, Y., Wang, H., Chen, Y., Guo, Y., Wang, C., Cui, H. & Xue, J. (2023). Water retention and hydraulic properties of a natural soil subjected to microplastic contaminations and leachate exposures. Science of the Total Environment, 901, 166502-166502. https://doi.org/10.1016/ j.scitotenv.2023.166502 google scholar
-
Vieira, M. F., Bovolato, A. L.d. C., da Fonseca, B. G., Izumi, C. M. S. & Brolo, A. G. (2023). A direct immunoassay based on surface-enhanced spectroscopy using AuNP/PS-b-P2VP nanocomposites. Sensors, 23, 4810. https://doi.org/10.3390/s23104810 google scholar
-
Yadav, H., Sethulekshmi, S. & Shriwastav, A. (2022). Estimation of microplastic exposure via the composite sampling of drinking water, google scholar
-
respirable air, and cooked food from Mumbai, India. Environmental Research, 214, 113735. https://doi.org/10.1016/j.envres.2022.113735 google scholar
-
Yang, Y., Huang, Z.-l., Wang, J.-d., Jiang, B.-b., Yang, Y.-r., Song, W.-b., 2012. Measurement of properties of polypropylene copolymers by Raman spectrum. Spectrosc. Spectr. Anal. 32 (12), 3262–3266. google scholar
-
Yuan, Z., Nag, R. & Cummins, E. (2022). Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. Science of The Total Environment, 823(153730), 153730. https://doi.org/10.1016/j.scitotenv.2022.153730 google scholar
-
Zhou, Q. Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C. & Lou, Y. (2018). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322, 201-208. https://doi.org/10.1016/j.geoderma.2018.02.015 google scholar
-
Zheng, X., Feng, Q., Chen, J., Yan, J., Li, X. & Guo, L. (2023). Quantification analysis of microplastics released from disposable polystyrene tableware with fluorescent polymer staining. Science of The Total Environment, 864, 161155. https://doi.org/10.1016/j.scitotenv.2022. 161155 google scholar
Health Risks and Environmental Threats of the Food Prepared on Plastic Cutting Boards
Year 2025,
Volume: 9 Issue: 2, 65 - 75, 29.08.2025
Oya Özuluğ
,
İrem Şarlak
,
Fahrettin Sarcan
,
Özgün Deniz Yürekli
,
Nilgün Kaya
,
Doğan Çetin
Abstract
Objective: This study investigated the number and size of microplastics (MPs) found in foods prepared by chopping on commercially available and widely used plastic cutting boards. It was revealed that when plastic cutting boards are used for chopping, they introduce MPs into foods in quantities that pose a health risk and contribute to the rapid increase in MPs in environmental pollution.
Material and Methods: The kitchen chopping process was simulated as the cutting of the meat with 100 knife strokes on white (low-density polyethylene) and pink plastic (a mixture of several plastics) cutting boards. Chopped food was dissolved in 10% potassium hydroxide (KOH) solution. The samples were filtered using a vacuum filtration system with 1.6 μm pore size glass fiber filters and left in Nile red for 10 min. Incorporating a 470 nm LED light, images were taken using a camera at ISO 100 with an orange filter. For the automatic quantification and characterization of the shape and size of the fluorescent MPs, ImageJ software (the Microplastics Visual Analysis Tool MP-VAT 2.0) was used.
Results: A total of 7413 MP pieces of fiber, fragment, and particle types, along with their respective diameters, were identified as a result of the experiments. This means that for every stroke of the knife made on the plastic cutting board, 12 pieces of MP are released into the food. When these pieces were classified by size, it was determined that pieces in the “50-110 μm” size range, considered potentially hazardous to health, constituted 44.3% of the total MPs. The total area of the 7413 MPs particles obtained from the experiment was calculated to be 225359 μm².
Conclusion: Our study has shown that foods prepared on plastic cutting boards contain microplastics in sizes that pose a risk to human health. Furthermore, cutting on plastic cutting boards increases the amount of MPS particles, which never decompose in nature, thus endangering the environment. The best way to protect both human health and the environment is to identify the source of the problem and take action to stop the use of plastic cutting boards.
Project Number
FBG-2022-38573
References
-
Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12-22. https://doi.org/10.1016/j.marpolbul. 2017.01.082 google scholar
-
Andreassen E (1999) Infrared and Raman spectroscopy of polypropylene. Polypropylene. Springer, Berlin, pp 320–328 google scholar
-
Arthur, C., Baker, J. E. & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. https://repository.library. noaa.gov/view/noaa/2509/noaa_2509_DS1.pdf google scholar
-
Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 google scholar
-
Besley, A., Vijver M. G., Behrens P. & Bosker T. (2017). A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Marine Pollution Bulletin, 114(1), 77-83. https://doi.org/10.1016/j.marpolbul.2016.08.055 google scholar
-
Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F. & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068-7074. https://doi.org/10.1021/ acs.est.9b01517 google scholar
-
Çullu, A. F., Sönmez, V. Z. & Sivri, N. (2021). Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea google scholar
-
(Turkey): Sources and areal distribution. Environmental Pollution, 268, 115801. https://doi.org/10.1016/j.envpol.2020.115801 google scholar
-
De-la-Torre, G.E. (2019). Microplastics: an emerging threat to food security and human health. Journal of Food Science and Technology, 57(5), 1601-1608. https://doi.org/10.1007/s13197-019-04138-1 google scholar
-
Dong, Y., Gao, M., Song, Z. & Qiu, W. (2020). As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 239, 124792. https://doi.org/10.1016/j.chemosphere. 2019.124792 google scholar
-
Feng, Z., Zheng, L. & Liu, J. (2023). Classification of household microplastics using a multi-model approach based on Raman spectroscopy. Chemosphere 325, 138312. https://doi.org/10.1016/j.chemosphere. 2023.138312 google scholar
-
Gao, F., Li, J., Sun, C., Zhang, L., Jiang, F., Cao, W., & Zheng, L. (2019). Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin, 144, 61-67. https://doi.org/10.1016/j.marpolbul.2019.04.039 google scholar
-
Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances 3(7), 1-5. https://doi.org/ 10.1126/sciadv.1700782 google scholar
-
Habib, R. Z., Kindi, R. A., Salem, F. A., Kittaneh, W. F., Poulose, V., Iftikhar, S. H., Mourad, A., & Thiemann, T. (2021). Microplastic contamination of chicken meat and fish through plastic cutting boards. International Journal of Environmental Research and Public Health, 19(20), 13442. https://doi.org/10.3390/ijerph192013442 google scholar
-
Habib, R. Z., Poulose, V., Alsaidi, R., Al Kendi, R., Iftikhar, S. H., Mourad, A. H. I., Kittaneh, W. F. & Thiemann, T. (2022). Plastic cutting boards as a source of microplastics in meat. Food Additives & Contaminants: Part A. 27, 1-11. https://doi.org/10.1080/19440049.2021.2017002 google scholar
-
Ivleva, N. P., Wiesheu, A. C. & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56(7), 1720-1739. https://doi.org/10.1002/anie.201606957 google scholar
-
Koelmans, A. A., Besseling, E., Wegner, A. & Foekema, E. M. (2013). Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environmental Science & Technology, 47(14), 7812-7820. https://doi.org/ 10.1021/es401169n google scholar
-
Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Chen, M., & Zhao, Y. (2019). Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis. Science of The Total Environment, 685, 836-846. https://doi.org/10.1016/j.scitotenv.2019.06.265 google scholar
-
Lopes, C., Fernández-González, V., Muniategui-Lorenzo, S., Caetano, M. & Raimundo, J. (2022). Improved methodology for microplastic extraction from gastrointestinal tracts of fat fish species. Marine Pollution Bulletin, 181, 113911. https://doi.org/10.1016/j.marpolbul. 2022.113911 google scholar
-
Lu, L., Luo, T., Zhao, Y., Cai, C., Fu, Z. & Jin, Y. (2019). Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Science of The Total Environment, 667, 94-100. https://doi.org/10.1016/j. scitotenv.2019.02.380 google scholar
-
Ludwig, V., Da Costa Ludwig, Z. M., Rodrigues, M. M., Anjos, V., Costa, C. B., das Dores, D. R. S. A, da Silva V. R. & Soares, F. (2018). Analysis by Raman and infrared spectroscopy combined with theoretical studies on the identification of plasticizer in PVC films. Vibrational Spectroscopy, 98, 134-138. https://doi.org/10.1016/j.vibspec. 08.004 google scholar
-
Luo, Y., Chuah C., Amin, Md. A., Khoshyan, A., Gibson, C. T., Tang, Y., Naidu, R. & Fang., C. (2022). Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. Journal of Hazardous Materials, 431, 128636. https://doi.org/10.1016/j.jhazmat.2022.128636 google scholar
-
Luqman, A., Nugrahapraja, H., Wahyuono, R. A., İslami, I., Haekal, M. H., Fardiansyah, Y., Putri, B. Q., Amalludin, F. I., Rofiqa, E. A., Götz, F. & Wibowo, A. T. (2021). Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments, 8(12), 138. https://doi.org/10. 3390/environments8120138 google scholar
-
Lusher, A. Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. (2017). Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and recommendations for future monitoring of microplastics (R & D-project). 87. Published online December 1, Accessed June 15, 2024. http://hdl.handle.net/11250/2470297 google scholar
-
Meyers, N., Catarino, A. I., Declercq, A. M., Brenan, A., Devriese, L., Vandegehuchte, M., Witte, B, Janssen, C. & Everaert, G. (2022). Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Science of The Total Environment, 823, 153441. https://doi.org/10. 1016/j.scitotenv.2022.153441 google scholar
-
Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131-139. https://doi.org/10.1016/j.envres.2008.07.025 google scholar
-
Nava, V., Frezzotti, M. L. & Leoni, B. (2021). Raman spectroscopy for the analysis of microplastics in aquatic systems. Applied Spectroscopy, 75(11), 1341-1357. https://doi.org/10.1177/00037028211043119 google scholar
-
Plastics Europe (2023). https://plasticseurope.org/knowledge-hub/ plastics-the-fast-facts-2023/ google scholar
-
Pongon, M. & Owen, A. (2020). Presence of microplastics in Ephemeroptera, Plecoptera, and Trichoptera of North Cascades National Park. Scholars Week. Published online May 18, 2020. Accessed June 15, 2024. https://cedar.wwu.edu/scholwk/2020/2020/ 72 google scholar
-
Prata, J. C., Reis, V., Matos, J. T. V., da Costa, J. P., Duarte, A. C. & RochaSantos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of The Total Environment, 690, 1277-1283. https://doi.org/ 10.1016/j.scitotenv.2019.07.060 google scholar
-
Prata, J. C., Castro, J. L., da Costa, J. P., Duarte, A. C., Rocha-Santos, T. & Cerqueira, M. (2020). The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Marine Pollution Bulletin, 159, 111522. https://doi.org/10.1016/j.marpolbul.2020. 111522 google scholar
-
Prata, J. C., Sequeira, I. F., Monteiro, S. S., Silva, A. L. P., da Costa, J. P., Dias-Pereira, P., Fernandes, A.J.S., da Costa, F. M., Duarte, A. C. & RochaSantos, T. (2021). Preparation of biological samples for microplastic identification by Nile Red. Science of The Total Environment, 783, 147065. https://doi.org/10.1016/j.scitotenv.2021.147065 google scholar
-
Rainieri, S. & Barranco, A. (2019). Microplastics, a food safety issue? Trends in Food Science & Technology, 84, 55-57. https://doi.org/10. 1016/j.tifs.2018.12.009 google scholar
-
Sarcan, F., Dönmez, Ö., Kara, K., Erol, A., Akalın, E, Arıkan, M. Ç., Makhloufi, H., Arnoult, A. & Fontaine, C. (2014). Bismuth-induced effects on google scholar
-
optical, lattice vibrational, and structural properties of bulk GaAsBi alloys. Nanoscale Research Letters, 9, 119. https://doi.org/10.1186/ 1556-276x-9-119 google scholar
-
Sarcan, F., Fairbairn, N. J., Zotev, P., Severs-Millard, T., Gillard, D. J., Wang, X., Conran, B., Heuken, M, Erol, A., Tartakovskii, A. I., Krauss, T. F., Hedley, G. J. & Wang, Y. (2023). Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS2 using focused ion beam. npj 2D Materials and Applications, 7, 23. https://doi.org/10.1038/s41699-023-00386-0 google scholar
-
Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of The Total Environment, 733, 139338. https://doi.org/10.1016/j.scitotenv.2020.139338 google scholar
-
Tamargo, A., Molinero, N., Reinosa, J. J., Alcolea-Rodriguez, V., Portela, R., Bañares, M. A., … & Moreno-Arribas, M. V. (2022). PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Scientific Reports 12(1), 528. google scholar
-
Tirkey, A. & Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Marine Pollution Bulletin, 170, 112604. https://doi.org/10.1016/j.marpolbul. 2021.112604 google scholar
-
Tong, N., Zhu, C.-j., Song, L.-x., Zhang, C.-h., Zhang, G.-q., Zhang, Y.-x., 2016. Characteristics of Raman spectra of polyethylene terephthalate. Spectrosc. Spectr. Anal. 36 (1), 114–118. google scholar
-
Udovicki, B., Andjelkovic, M., Cirkovic-Velickovic, T. & Rajkovic A. (2022). Microplastics in food: scoping review on health effects, occurrence, and human exposure. International Journal of Food Contamination, 9, 7. https://doi.org/10.1186/s40550-022-00093-6 google scholar
-
Wang, Y. F., Wang, X. Y., Chen, B. J., Yang, Y. P., Li, H., & Wang, F. (2025). Impact of microplastics on the human digestive system: From basic to clinical. World Journal of Gastroenterology, 31(4), 100470. google scholar
-
Wang, P. Y., Zhao, Z. Y., Xiong, X. B., Wang, N., Zhou, R., Zhang, Z. M., Ding, F., Hao, M., Wang, S., Ma, S., Uzamurera, A. G., Xiao K., Khan, A., Tao, Ş.T., Wang, W.Y., Tao, H.Y., Xiong, Y. C. (2023). Microplastics affect soil bacterial community assembly more by their shapes rather than the concentrations. Water Research, 245, 120581. google scholar
-
Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T. & Reemtsma, T. (2018). Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Research, 139, 83-100. https://doi.org/10.1016/j.watres.2018. 03.051 google scholar
-
Xie, Y., Wang, H., Chen, Y., Guo, Y., Wang, C., Cui, H. & Xue, J. (2023). Water retention and hydraulic properties of a natural soil subjected to microplastic contaminations and leachate exposures. Science of the Total Environment, 901, 166502-166502. https://doi.org/10.1016/ j.scitotenv.2023.166502 google scholar
-
Vieira, M. F., Bovolato, A. L.d. C., da Fonseca, B. G., Izumi, C. M. S. & Brolo, A. G. (2023). A direct immunoassay based on surface-enhanced spectroscopy using AuNP/PS-b-P2VP nanocomposites. Sensors, 23, 4810. https://doi.org/10.3390/s23104810 google scholar
-
Yadav, H., Sethulekshmi, S. & Shriwastav, A. (2022). Estimation of microplastic exposure via the composite sampling of drinking water, google scholar
-
respirable air, and cooked food from Mumbai, India. Environmental Research, 214, 113735. https://doi.org/10.1016/j.envres.2022.113735 google scholar
-
Yang, Y., Huang, Z.-l., Wang, J.-d., Jiang, B.-b., Yang, Y.-r., Song, W.-b., 2012. Measurement of properties of polypropylene copolymers by Raman spectrum. Spectrosc. Spectr. Anal. 32 (12), 3262–3266. google scholar
-
Yuan, Z., Nag, R. & Cummins, E. (2022). Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. Science of The Total Environment, 823(153730), 153730. https://doi.org/10.1016/j.scitotenv.2022.153730 google scholar
-
Zhou, Q. Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C. & Lou, Y. (2018). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322, 201-208. https://doi.org/10.1016/j.geoderma.2018.02.015 google scholar
-
Zheng, X., Feng, Q., Chen, J., Yan, J., Li, X. & Guo, L. (2023). Quantification analysis of microplastics released from disposable polystyrene tableware with fluorescent polymer staining. Science of The Total Environment, 864, 161155. https://doi.org/10.1016/j.scitotenv.2022. 161155 google scholar