Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 4 Sayı: 9, 0 - 0, 31.12.2019

Öz

Kaynakça

  • [1]Fuyan, J., Xiaodang, W., and Dezhen, W., Appl. Energy 2014;134:456-468.
  • [2] Kong, L.B., Li, T., Hng, H.H., Boey, F., and Zhang, T., Waste Energy Harvesting: Mechanical and ThermalEnergies, (Springer,VerlagBerlin Heidelberg,2014).
  • [3]Kamal, I.A.R., Fatima, L.A.M., Raquel, d.S.C.R., Antonio, d.J.B., and Louryval, P.C., Int.J.Therm.Sci. 2014;75:184-193.
  • [4]Paksoy, H.O., Thermal energy storage for sustainable energy consumption fundamentals, Case Studies andDesign,( Springer, Izmir-Turkey,2005).
  • [5]Sharma, A., Tyagi, W., Chen, C., and Buddhi, D., Renew.Sustain.Energy Rev.2009;13:318-345.
  • [6] Garg, H.P., Mullick, S.C., and Bhargava, A.K., Solar Thermal Energy Storage. Dordrecht, Holland: D. Reidel Publishing Co, 1985.
  • [7] Dinçer, I., and Rosen, M. A.,Thermal energy storage: Systems and applications. Chichester: John Wiley& Sons, 2002.
  • [8] Harikrishnan, S., Devaraju, A., Sivasamy, P., and Kalaiselvamb, S., Experimental investigation of improved thermal characteristics of SİO2/myristic acid nanofluid as phase change material (PCM), Materials Today: Proceedings (Accepted).
  • [9] Farid, M. M., Khudhair, A. M., Razak, S. A. K., and Al-Hallaj, S., A review on phase change energy storage: materials and applications. Energy Conversion and Management 2004;45:1597-1161.
  • [10] Abhat, A., Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy 1983;30:313-331.
  • [11] Akgun, M., Aydin, O., and Kaygusuz, K., Thermal energy storage behavior of a paraffin during melting and solidification. Energy Sources Part A 2007;29:1315–1326.
  • [12] Joulin, A., Younsi, Z., Zalewski, L., Lassue, S., Rousse, D. R., and Cavrot, J-P., Experimental and numerical investigation of a phase change material: Thermal energy storage and release. Applied Energy 2011;88:2454-62.
  • [13] Kalaiselvam, S., Veerappan, M., Iniyan, S., and Arul Aaron. A., Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. International Journal of Thermal Sciences 2008;47:858-874.
  • [14] Veerappan, M., Kalaiselvam, S., Iniyan, S., and RankoGoic., Phase change characteristic study of spherical PCMs in solar energy storage. Solar Energy 2009;83:1245-1252.
  • [15] Harikrishnan, S., AmeeliaRoseline, A., and Kalaiselvam, S., Preparation and thermophysical properties of water–glycerol mixture-based CuOnanofluids as pcm for cooling applications, IEEE Transactions on Nanotechnology 2013;12:629-635.
  • [16] Sivasamy, P.,Devaraju, A., and Harikrishnan, S., Review on heat transfer enhancement of phase change materials (PCMs). Materials Today: Proceedings 2018;5:14423–14431.
  • [17] Morcos, V.H., Investigation of a latent heat thermal energy storage system. Solar Wind Technol 1990;7(2/3):197–202.
  • [18] Sadasuke, I., and Naokatsu, M., Heat transfer enhancement by fins in latent heat thermal energy storage devices. Solar Eng. ASME 1991;223–228.
  • [19] Costa, M., Buddhi, D.,and Oliva, A., Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers. Mgmt. 1998;39(3/4):319–330.
  • [20] Padmanabhan, P.V., and Krishna Murthy, M.V.,Outward phase change in a cylindrical annulus with axial fins on the inner tube. Int. J. Heat Mass Transfer 1986;29:1855–1868.
  • [21] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K., Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Solar Energy 1997;60:281–290.
  • [22] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K., Heat transfer enhancement in a latent heat storage system. Solar Energy 1999;65:171–180.
  • [23] Ismail, K.A.R., Alves, C.L.F., and Modesto, M.S., Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Thermal Eng. 2001;21: 53–77.
  • [24] Abdi, A., Martin, V., and Chiu, J., Numerical investigation of melting in a cavity with vertically oriented fins.14th International Conference on Energy Storage 25-28 April 2018, Adana, TURKEY.
  • [25] Tan, L., Kwok, Y., Date, A., and Akbarzadeh, A.,Numerical study of natural convection effects in latent heat storage using aluminum fins and spiral fillers. Int J Mech Aerosp Eng 2012;6:238–45.
  • [26] Zhang, Y., and Faghri, A., Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 1996;3:119–27.
  • [27] Zhang, Y., and Faghr,i A., Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 1996;39(3):165–73.
  • [28] Michels, H., and Pitz-Paal, R., Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 2007;81:829–37.
  • [29] Wu, M., Xu, C., He, Y.L., Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules. Appl Therm Eng 2016;93:1061–73.
  • [30] Jegadheeswaran, S., and Pohekar, S. D., Performance enhancement in latent heat thermal storage system: A review. Renewable and Sustainable Energy Reviews 2009;13:2225–2244.
  • [31] Li, Y.Q., He, Y.L., Song, H.J., Xu, C., and Wang, W.W., Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials. Renew Energy 2013;59:92–9.
  • [32] Shaikh, S., and Lafdi, K., Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Conversion and Management 2006;47:2103–2117.
  • [33] Fang, M., and Chen, G., Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng 2007;27:994–1000.
  • [34] Seeniraj, R.V., and Narasimhan, N.L., Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 2008;82:535–42.
  • [35] Mosaffa, A.H., Ferreira, C.A.I., Talati, F., and Rosen, M.A., Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag 2013;67:1–7.
  • [36] Mosaffa, A.H., Farshi, L.G., Ferreira, C.A.I., and Rosen, M.A., Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications. Renew Energy 2014;68:452 8.
  • [37] Bahiraei, M., Hosseinalipour, S.M., and Hangi, M., Numerical study and optimization of hydrothermal characteristics of MneZn ferrite nanofluid within annulus in the presence of magnetic field, J. Supercond. Nov. Magn. 2014;27:527-534.
  • [38] Bahiraei, M., and Heshmatian, S., Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations. Energy Convers. Manag. 2017;149:155-167.
  • [39]Bazri, S., Badruddin, I.A., Naghavi, M.S.,and Bahiraei, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy 2018;118:761-778.
  • [40] Arasu, A.V., Sasmito, A.P., and Mujumdar, A.S., Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm Sci 2012;2012. [OnLine, pp. 4-4].
  • [41] Ho, C.J., and Gao, J.Y., Preparation and thermophysical properties of nanoparticle-inparaffin emulsion as phase change material. Int Commun Heat Mass Transf 2009;36:467–70.
  • [42] Seeniraj, R.V., Velraj, R., and Narasimhan, N.L., Heat transfer enhancement study of a lhts unit containing dispersed high conductivity particles. J Sol Energy Eng 2002;124:243–9.
  • [43] Shaikh, S., Lafdi, K., and Hallinan, K., Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys 2008;103:094302-094302-6.
  • [44] Minea, A.A., Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain Energy Rev 2017;71:426–34.
  • [45] Ho, C.J., Chen, M.W., and Li, Z.W., Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 2008;51:4506–16.
  • [46] Hu, X., and Zhang, Y., Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: Laminar flow in a circular tube with constant heat flux. Int J Heat Mass Transf 2002;45:3163–72.
  • [47] Tanishita, Int Solar Energy Eng, Meibourne, 1970;2/73.
  • [48] Richards, S.J., and Chinnery, DNW. 42, CSIR Res Rep. 237, South; 1967.
  • [49] Hamed, M., Fallah, A., Brahim, A., and Ben, A., Numerical analysis of an integrated storage solar heater. Int. J. Hydrogen Energy;2016.
  • [50] Huang, K., Feng, G., and Zhang, J., Experimental and numerical study on phase change material floor in solar water heating system with a new design. Solar Energy 2014;105:126-138.
  • [51] Bansal, N.K., and Buddhi, D., An analytical study of a latent heat storage system in a cylinder. Solar Energy 1992;33(4):235–42.
  • [52] Chaurasia, P.B.L., Phase change material in solar water heater storage system. In: Proceedings of the 8th international conference on thermal energy storage; 2000.
  • [53] Ibáñez, M., Cabeza, L.F., Solé, C., Roca, J., and Nogués, M., Modelization of a water tank including a PCM module. Appl Thermal Eng 2006;26:1328–33.
  • [54] Padovan, R., and Manzan, M., Genetic optimization of a PCM enhanced storage tank for solar domestic hot water systems. Solar Energy 2014;103:563–73.
  • [55] Kousksou, T., Bruel, P., Cherreau, G., Leoussoff, V., and El Rhafiki, T., PCM storage for solar DHW: from an unfulfilled promise to a real benefit. Solar Energy 2011;85:2033–40.
  • [56] Nkwetta, D.N., Vouillamoz, P-E., Haghighat, F., El-Mankibi, M., Moreau, A., and Daoud, A., Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Appl Thermal Eng 2014.
  • [57] Talmatsky, E., and Kribus, A., PCM storage for solar DHW: an unfulfilled promise? Solar Energy 2008;82(10):861–869.
  • [58] Morrison, D.J., and Abdel Khalik, S.I., Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems. Solar Energy 1978;20:57–67.
  • [59] Jurinak, J.J., and Adbel Khalik, S.I., On the performance of air-based solar heating systems utilizing phase change energy storage. Solar Energy 1979;24:503–22.
  • [60] Ghoneim, A.A., and Klein, S.A., The effect of phase change material properties on the performance of solar air-based heating systems. Solar Energy 1989;42(6):441–7.
  • [61] Zhou, G., Zhang, Y., Zhang, Q., Lin, K., and Di, H., Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl Energy 2007;84(10):1068–77.
  • [62] Srikhirin, P., Aphornratana, S., and Chungpaibulpatana, S., A review of absorption refrigeration technologies. Renew Sustain Energy Rev 2001;5:343–72.
  • [63] Ullah, K., Saidur, R., Ping, H., Akikur, R., and Shuvo, N., A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 2013;24:499–513.
  • [64] Agyenim, F., Knight, I., and Rhodes, M., Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy 2010;84:735–44.
  • [65] Agyenim, F., The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy 2016;87(Part1):229–39.
  • [66] Pintaldi, S., Sethuvenkatraman, S., White, S., and Rosengarten, G., Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy 2017;188:160–77.
  • [67] Brancato, V., Frazzica, A., Sapienza, A., and Freni, A., Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Mater Sol Cells 2017;160:225–32.
  • [68] Serale, G., Baronetto, S., Goia, F., and Perino, M., Characterization and Energy Performance of a Slurry PCM-based Solar Thermal Collector: A Numerical Analysis. Energy Procedia 2014;48:223–32.

Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview

Yıl 2019, Cilt: 4 Sayı: 9, 0 - 0, 31.12.2019

Öz

In this work, recent numerical studies on energy storage in phase change materials(PCMs) have been reviewed.In recent years, thermal energy storage in phase change materials(PCMs) has been very popular in terms of storing energy and supplying when its needed.High thermal capacity of PCMs, due to large enthalpy of phase change(latent heat), increase the potentiel of these materials for heat accumulation, but also modifies heat transfer in transient states what improves their insulating characteristics. Many simple models have been developed for numerical simulations of energy storage units. Computaional Fluids Dynamics (CFD) tools such as Ansys Fluent have been used for most of the numerical studies. Numerical studies have resulted improving the energy storage potential of PCMs.

Kaynakça

  • [1]Fuyan, J., Xiaodang, W., and Dezhen, W., Appl. Energy 2014;134:456-468.
  • [2] Kong, L.B., Li, T., Hng, H.H., Boey, F., and Zhang, T., Waste Energy Harvesting: Mechanical and ThermalEnergies, (Springer,VerlagBerlin Heidelberg,2014).
  • [3]Kamal, I.A.R., Fatima, L.A.M., Raquel, d.S.C.R., Antonio, d.J.B., and Louryval, P.C., Int.J.Therm.Sci. 2014;75:184-193.
  • [4]Paksoy, H.O., Thermal energy storage for sustainable energy consumption fundamentals, Case Studies andDesign,( Springer, Izmir-Turkey,2005).
  • [5]Sharma, A., Tyagi, W., Chen, C., and Buddhi, D., Renew.Sustain.Energy Rev.2009;13:318-345.
  • [6] Garg, H.P., Mullick, S.C., and Bhargava, A.K., Solar Thermal Energy Storage. Dordrecht, Holland: D. Reidel Publishing Co, 1985.
  • [7] Dinçer, I., and Rosen, M. A.,Thermal energy storage: Systems and applications. Chichester: John Wiley& Sons, 2002.
  • [8] Harikrishnan, S., Devaraju, A., Sivasamy, P., and Kalaiselvamb, S., Experimental investigation of improved thermal characteristics of SİO2/myristic acid nanofluid as phase change material (PCM), Materials Today: Proceedings (Accepted).
  • [9] Farid, M. M., Khudhair, A. M., Razak, S. A. K., and Al-Hallaj, S., A review on phase change energy storage: materials and applications. Energy Conversion and Management 2004;45:1597-1161.
  • [10] Abhat, A., Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy 1983;30:313-331.
  • [11] Akgun, M., Aydin, O., and Kaygusuz, K., Thermal energy storage behavior of a paraffin during melting and solidification. Energy Sources Part A 2007;29:1315–1326.
  • [12] Joulin, A., Younsi, Z., Zalewski, L., Lassue, S., Rousse, D. R., and Cavrot, J-P., Experimental and numerical investigation of a phase change material: Thermal energy storage and release. Applied Energy 2011;88:2454-62.
  • [13] Kalaiselvam, S., Veerappan, M., Iniyan, S., and Arul Aaron. A., Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. International Journal of Thermal Sciences 2008;47:858-874.
  • [14] Veerappan, M., Kalaiselvam, S., Iniyan, S., and RankoGoic., Phase change characteristic study of spherical PCMs in solar energy storage. Solar Energy 2009;83:1245-1252.
  • [15] Harikrishnan, S., AmeeliaRoseline, A., and Kalaiselvam, S., Preparation and thermophysical properties of water–glycerol mixture-based CuOnanofluids as pcm for cooling applications, IEEE Transactions on Nanotechnology 2013;12:629-635.
  • [16] Sivasamy, P.,Devaraju, A., and Harikrishnan, S., Review on heat transfer enhancement of phase change materials (PCMs). Materials Today: Proceedings 2018;5:14423–14431.
  • [17] Morcos, V.H., Investigation of a latent heat thermal energy storage system. Solar Wind Technol 1990;7(2/3):197–202.
  • [18] Sadasuke, I., and Naokatsu, M., Heat transfer enhancement by fins in latent heat thermal energy storage devices. Solar Eng. ASME 1991;223–228.
  • [19] Costa, M., Buddhi, D.,and Oliva, A., Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers. Mgmt. 1998;39(3/4):319–330.
  • [20] Padmanabhan, P.V., and Krishna Murthy, M.V.,Outward phase change in a cylindrical annulus with axial fins on the inner tube. Int. J. Heat Mass Transfer 1986;29:1855–1868.
  • [21] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K., Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Solar Energy 1997;60:281–290.
  • [22] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K., Heat transfer enhancement in a latent heat storage system. Solar Energy 1999;65:171–180.
  • [23] Ismail, K.A.R., Alves, C.L.F., and Modesto, M.S., Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl. Thermal Eng. 2001;21: 53–77.
  • [24] Abdi, A., Martin, V., and Chiu, J., Numerical investigation of melting in a cavity with vertically oriented fins.14th International Conference on Energy Storage 25-28 April 2018, Adana, TURKEY.
  • [25] Tan, L., Kwok, Y., Date, A., and Akbarzadeh, A.,Numerical study of natural convection effects in latent heat storage using aluminum fins and spiral fillers. Int J Mech Aerosp Eng 2012;6:238–45.
  • [26] Zhang, Y., and Faghri, A., Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 1996;3:119–27.
  • [27] Zhang, Y., and Faghr,i A., Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 1996;39(3):165–73.
  • [28] Michels, H., and Pitz-Paal, R., Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 2007;81:829–37.
  • [29] Wu, M., Xu, C., He, Y.L., Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules. Appl Therm Eng 2016;93:1061–73.
  • [30] Jegadheeswaran, S., and Pohekar, S. D., Performance enhancement in latent heat thermal storage system: A review. Renewable and Sustainable Energy Reviews 2009;13:2225–2244.
  • [31] Li, Y.Q., He, Y.L., Song, H.J., Xu, C., and Wang, W.W., Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials. Renew Energy 2013;59:92–9.
  • [32] Shaikh, S., and Lafdi, K., Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Conversion and Management 2006;47:2103–2117.
  • [33] Fang, M., and Chen, G., Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng 2007;27:994–1000.
  • [34] Seeniraj, R.V., and Narasimhan, N.L., Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 2008;82:535–42.
  • [35] Mosaffa, A.H., Ferreira, C.A.I., Talati, F., and Rosen, M.A., Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag 2013;67:1–7.
  • [36] Mosaffa, A.H., Farshi, L.G., Ferreira, C.A.I., and Rosen, M.A., Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications. Renew Energy 2014;68:452 8.
  • [37] Bahiraei, M., Hosseinalipour, S.M., and Hangi, M., Numerical study and optimization of hydrothermal characteristics of MneZn ferrite nanofluid within annulus in the presence of magnetic field, J. Supercond. Nov. Magn. 2014;27:527-534.
  • [38] Bahiraei, M., and Heshmatian, S., Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations. Energy Convers. Manag. 2017;149:155-167.
  • [39]Bazri, S., Badruddin, I.A., Naghavi, M.S.,and Bahiraei, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy 2018;118:761-778.
  • [40] Arasu, A.V., Sasmito, A.P., and Mujumdar, A.S., Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm Sci 2012;2012. [OnLine, pp. 4-4].
  • [41] Ho, C.J., and Gao, J.Y., Preparation and thermophysical properties of nanoparticle-inparaffin emulsion as phase change material. Int Commun Heat Mass Transf 2009;36:467–70.
  • [42] Seeniraj, R.V., Velraj, R., and Narasimhan, N.L., Heat transfer enhancement study of a lhts unit containing dispersed high conductivity particles. J Sol Energy Eng 2002;124:243–9.
  • [43] Shaikh, S., Lafdi, K., and Hallinan, K., Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys 2008;103:094302-094302-6.
  • [44] Minea, A.A., Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain Energy Rev 2017;71:426–34.
  • [45] Ho, C.J., Chen, M.W., and Li, Z.W., Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 2008;51:4506–16.
  • [46] Hu, X., and Zhang, Y., Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: Laminar flow in a circular tube with constant heat flux. Int J Heat Mass Transf 2002;45:3163–72.
  • [47] Tanishita, Int Solar Energy Eng, Meibourne, 1970;2/73.
  • [48] Richards, S.J., and Chinnery, DNW. 42, CSIR Res Rep. 237, South; 1967.
  • [49] Hamed, M., Fallah, A., Brahim, A., and Ben, A., Numerical analysis of an integrated storage solar heater. Int. J. Hydrogen Energy;2016.
  • [50] Huang, K., Feng, G., and Zhang, J., Experimental and numerical study on phase change material floor in solar water heating system with a new design. Solar Energy 2014;105:126-138.
  • [51] Bansal, N.K., and Buddhi, D., An analytical study of a latent heat storage system in a cylinder. Solar Energy 1992;33(4):235–42.
  • [52] Chaurasia, P.B.L., Phase change material in solar water heater storage system. In: Proceedings of the 8th international conference on thermal energy storage; 2000.
  • [53] Ibáñez, M., Cabeza, L.F., Solé, C., Roca, J., and Nogués, M., Modelization of a water tank including a PCM module. Appl Thermal Eng 2006;26:1328–33.
  • [54] Padovan, R., and Manzan, M., Genetic optimization of a PCM enhanced storage tank for solar domestic hot water systems. Solar Energy 2014;103:563–73.
  • [55] Kousksou, T., Bruel, P., Cherreau, G., Leoussoff, V., and El Rhafiki, T., PCM storage for solar DHW: from an unfulfilled promise to a real benefit. Solar Energy 2011;85:2033–40.
  • [56] Nkwetta, D.N., Vouillamoz, P-E., Haghighat, F., El-Mankibi, M., Moreau, A., and Daoud, A., Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Appl Thermal Eng 2014.
  • [57] Talmatsky, E., and Kribus, A., PCM storage for solar DHW: an unfulfilled promise? Solar Energy 2008;82(10):861–869.
  • [58] Morrison, D.J., and Abdel Khalik, S.I., Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems. Solar Energy 1978;20:57–67.
  • [59] Jurinak, J.J., and Adbel Khalik, S.I., On the performance of air-based solar heating systems utilizing phase change energy storage. Solar Energy 1979;24:503–22.
  • [60] Ghoneim, A.A., and Klein, S.A., The effect of phase change material properties on the performance of solar air-based heating systems. Solar Energy 1989;42(6):441–7.
  • [61] Zhou, G., Zhang, Y., Zhang, Q., Lin, K., and Di, H., Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl Energy 2007;84(10):1068–77.
  • [62] Srikhirin, P., Aphornratana, S., and Chungpaibulpatana, S., A review of absorption refrigeration technologies. Renew Sustain Energy Rev 2001;5:343–72.
  • [63] Ullah, K., Saidur, R., Ping, H., Akikur, R., and Shuvo, N., A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 2013;24:499–513.
  • [64] Agyenim, F., Knight, I., and Rhodes, M., Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy 2010;84:735–44.
  • [65] Agyenim, F., The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy 2016;87(Part1):229–39.
  • [66] Pintaldi, S., Sethuvenkatraman, S., White, S., and Rosengarten, G., Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Appl Energy 2017;188:160–77.
  • [67] Brancato, V., Frazzica, A., Sapienza, A., and Freni, A., Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Mater Sol Cells 2017;160:225–32.
  • [68] Serale, G., Baronetto, S., Goia, F., and Perino, M., Characterization and Energy Performance of a Slurry PCM-based Solar Thermal Collector: A Numerical Analysis. Energy Procedia 2014;48:223–32.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Articles
Yazarlar

Büşra Arslan

Mustafa İlbas

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 7 Ocak 2020
Kabul Tarihi 9 Ocak 2020
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 9

Kaynak Göster

APA Arslan, B., & İlbas, M. (2019). Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview. Turkish Journal of Energy Policy, 4(9).
AMA Arslan B, İlbas M. Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview. TJEP. Aralık 2019;4(9).
Chicago Arslan, Büşra, ve Mustafa İlbas. “Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview”. Turkish Journal of Energy Policy 4, sy. 9 (Aralık 2019).
EndNote Arslan B, İlbas M (01 Aralık 2019) Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview. Turkish Journal of Energy Policy 4 9
IEEE B. Arslan ve M. İlbas, “Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview”, TJEP, c. 4, sy. 9, 2019.
ISNAD Arslan, Büşra - İlbas, Mustafa. “Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview”. Turkish Journal of Energy Policy 4/9 (Aralık 2019).
JAMA Arslan B, İlbas M. Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview. TJEP. 2019;4.
MLA Arslan, Büşra ve Mustafa İlbas. “Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview”. Turkish Journal of Energy Policy, c. 4, sy. 9, 2019.
Vancouver Arslan B, İlbas M. Numerical Investigations of Phase Change Materials (PCMs) for Thermal Energy Storage Systems: An Overview. TJEP. 2019;4(9).