Araştırma Makalesi
BibTex RIS Kaynak Göster

Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi

Yıl 2023, , 25 - 38, 29.03.2023
https://doi.org/10.18182/tjf.1205157

Öz

Araştırma Burdur Gölü Havzasının morfometrik analiz parametrelerini belirlemek amacıyla yapılmıştır. Ayrıca morfometrik parametreler yardımıyla havzadaki erozyon durumu değerlendirilmiştir. Araştırmanın veri altyapısı SRTM (Shuttle Radar Topography Mission)’den elde edilen Sayısal Yükseklik Modeli (SYM) kullanılarak oluşturulmuştur. Analizlerde kullanılan akarsu dizinlerinin belirlenmesi ArcGIS 10.2 programı aracılığıyla yapılmıştır. Bu bağlamda; havzanın çizgisel, alansal ve rölyef morfometrilerine ait parametrelerin, morfometrik analiz sonuçlarına bakıldığında; çatallanma oranı 3.42, akarsu uzunluk oranı 3.46, drenaj yoğunluğu 1.25, dere sıklığı 0.95, form faktörü 0.25, gravelius indeksi 2.66, dairesellik oranı 0.14, havza uzunluk oranı 0.28, havza rölyefi 1534, rölyef oranı 0.013, bağıl rölyef 0.29, engebelilik değeri sırasıyla 1.92 ve hipsometrik integral değeri 0.28 olarak bulunmuştur. Genel olarak havzanın infiltrasyon kapasitesinin yüksek, akarsu sıklığı ve taşkın hassasiyetinin düşük olduğu sonucu bulunmuştur. Morfometrik analizler sonucu, sahanın kurak iklim şartları ve zayıf bitki örtüsüne sahip olduğu belirlenmiştir. Sonuç olarak morfometri parametrelerinin büyük çoğunluğunda erozyon riskinin nispeten az olduğu kanısına varılmıştır. Bu sonuçlara göre, morformetrik analizlerin, havzada erozyon durumunu yorumlamada önemli bir araç olduğu söylenebilir.

Teşekkür

Bu makale Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü’nde tamamlanan “Burdur Gölü Havzasında Meydana Gelen Toprak Erozyonunun Coğrafi Bilgi Sistemleri ve WEPP Erozyon Tahmin Modeli Kullanılarak Belirlenmesi” başlıklı Doktora Tezinden üretilmiştir. Emeği geçen kurum ve kişilere teşekkür ederiz.

Kaynakça

  • Agarwal, C.S., 1998. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26: 169-175.
  • Akın, M., Akın, G., 2007. Suyun önemi, Türkiye’de su potansiyeli, su havzaları ve su kirliliği. Ankara Üniversitesi Dil ve Tarih Coğrafya Fakültesi Dergisi, 47(2): 105-118.
  • Alam, A., Ahmed, B., Sammonds, P., 2021. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575: 295-307.
  • Arefin, R., Seker, D.Z., Hore, R., Meshram, S.G., 2023. GIS and remotely sensed data-based morphometric elements analysis for determination of Bengal Basin evolution. Environment, Development and Sustainability, 25: 1-34.
  • Arulbalaji, P., Gurugnanam, B., 2017. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga watershed, Cauvery River, Salem district, Tamil Nadu, India. Applied Water Science, 7(7): 3875-3883.
  • Ataol, M., 2010. Burdur Gölü Havzası için yeni bir su yönetim modeli önerisi. Doktora Tezi, Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara.
  • Avcı, V., Sunkar, M., 2015. Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30: 91-119.
  • Banerjee, A., Singh, P., Pratap, K., 2017. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: An integrated GIS-based approach. Applied Water Science, 7(4): 1807-1815.
  • Bates, N., 1981. Valley shapes. In: Practical Foundations of Physical Geography (Ed: Knap, B.), George Allen and Unwin, London, pp. 25-29. Bharath, A., Kumar, K.K., Maddamsetty, R., Manjunatha, M., Tangadagi, R.B., Preethi, S., 2021. Drainage morphometry based sub-watershed prioritization of Kalinadi Basin using geospatial technology. Environmental Challenges, 5: 100277.
  • Bhattacharya, R.K., Das Chatterjee, N., Das, K., 2019. Multi-criteria-based sub-basin prioritization and its risk assessment of erosion susceptibility in Kansai–Kumari catchment area, India. Applied Water Science, 9(4): 1-30.
  • Bishop, M.P., Shroder, J.F., Bonki, R., Olsenholler, J., 2002. Geomorphic change in high mountains: A western Himalayan perspective. Glob Planet Change, 32(4): 311-329.
  • Biswas, H., Raizada, A., Mandal, D., Kumar, S., Srinivas, S., Mishra, P.K., 2015. Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth, 6(4): 1247–1257.
  • Bogale, A., 2021. Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(7): 1-7.
  • Chandrashekar, H., Lokesh, K.V., Sameena, M., Roopa, J., Ranganna, G., 2015. GIS–based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4: 1345-1353.
  • Chorley, R.J., Dale, P.F., 1972. Cartographic problems in stream channel delineation. Cartography, 7(4): 150-162.
  • Coşkun, M., Öztürk, A., 2021. Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry, 23(1): 1-10.
  • Çoban, H.O., Eker, M., 2009. SRTM verileri ile bazı topoğrafik analizler: Isparta Orman Bölge Müdürlüğü örneği. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, A(2): 76- 91.
  • Dali, N., Ziouch, O.R., Dali, H., Daifallah, T., Cherifa, B., Sara, H., 2023. Remote sensing, and (GIS) approach, for morphometric assessment and sub-watershed prioritization according to soil erosion and groundwater potential in an endorheic semi-arid area of Algeria. Arabian Journal of Geosciences, 16(1): 95.
  • Dowling, T., Walker, J., Richardson, D.P., O'Sullivan, A., Summerell, G.K., 1998. Application of the Hypsometric Integral and Other Terrain Based Metrics as Indicators of Catchment Health: A Preliminary Analysis. CSIRO Land and Water, Technical Report 20/98, Australia.
  • Dubey, S.K., Sharma, D., Mundetia, N., 2015. Morphometric analysis of the Banas River Basin using geographical information system, Rajasthan, India. Hydrology, 3(5): 47-57.
  • Durán, Z.V.H., Francia, M.J.R., Rodríguez, P.C.R., Martínez, R.A., Cárceles, R.B., 2006. Soil erosion and runoff prevention by plant covers in a mountainous area (SE Spain): Implications for sustainable agriculture. The Environmentalist, 26: 309–319.
  • Dursun, İ., Babalık, A.A., 2021. De Martonne-Gottman ve Standart Yağış İndeksi yöntemleri kullanılarak kuraklığın belirlenmesi: Isparta ili örneği. Turkish Journal of Forestry, 22(3): 192-201.
  • Elbaşı, E., 2015. Marmara Denizi akarsu havzalarının morfometrik analizi. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul.
  • Esen, F., 2022. Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education, (47): 233-257.
  • ESRI (Enviromental Systems Research Institute), 2004. Getting Started with ArcGIS. Redlands: Enviromental Systems Research Institute Inc.265.
  • Faniran, A., 1968. The index of drainage intensity - A provisional new drainage factor. Australian Journal of Science, 31(9): 328 - 330.
  • Farhan, Y., Anbar, A., Enaba, O., Al-Shaikh, N., 2015. Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. Journal of Water Resource and Protection, 7(06): 456-475.
  • Gajbhiye, S., Mishra, S.K., Pandey, A., 2014. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Applied Water Science, 4: 51-61.
  • Ganie, P.A., Posti, R., Kunal, K., Kunal, G., Bharti, V.S., Sehgal, V.K., Pandey, P.K., 2023. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 23(1): 1-32.
  • Gayen, A., Haque, S.M., 2022. Soil erodibility assessment of laterite dominant sub-basin watersheds in the humid tropical region of India. Catena, 213: 106161.
  • Gebre, T., Kibru, T., Tesfaye, S., Taye, G., 2015. Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02): 177.
  • Görgülü, E., Göl, C., 2021. Coğrafi bilgi sistemleri ile havza morfometrik analizi: Sarayköy Göleti Havzası (Çankırı) örneği. Anadolu Orman Araştırmaları Dergisi, 7(2): 107-118.
  • Gravelius, H., 1914. Grundriß der gesamten Gewässerkunde Band 1: Flufikunde. Goschen, Berlin, Germany.
  • Hadley, R.F., Schumm, S.A., 1961. Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. U.S. Geological Survey Water Supply Paper, 153 (1B): 198.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: Hydro-physical approach to quantitative morphology. Geological Society of American Bulletin, 56: 275-370.
  • İmamoğlu, A., 2020. Alaca Çayı Havzası erozyon durumunun morfometrik ölçümler ile ilişkisi. Avrupa Bilim ve Teknoloji Dergisi, (18): 868-878.
  • Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographical information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11): 1593-1600.
  • Joji, V.S., Nair, A.S.K., Baiju, K.V., 2013. Drainage basin delineation and quantitative analysis of Panamaram Watershed of Kabani River Basin, Kerala using remote sensing and GIS. Journal of the Geological Society of India, 82(4): 368-378.
  • Karabulut, M.S., Özdemir, H., 2019. Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18): 1-14.
  • Keller, E.A., Pinter, N., 1996. Active Tectonics: Earthquakes, Uplift and Landscape. Prentice-Hall, London.
  • Koralay, N., Kara, Ö., 2021. Effects of morphometric characteristics on flood in Degirmendere Sub-Watersheds, Northeastern Turkey. International Journal of River Basin Management, 1-11.
  • Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2011. Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environmental Earth Sciences, 64: 373-381.
  • Mayer, L., 1990. Introduction to quantitative geomorphology. NJ: Prantice-Hall International, Englewood Cliffs, New Jersey.
  • Miller, V.C., 1953. Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Varginia and Tennessee. Columbia University, Department of Geology, ONR, Geography Branch, Technical Report, NR 389042, New York.
  • Obeidat, M., Awawdeh, M., Al‐Hantouli, F., 2021. Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2): e12711.
  • Ödeker, B., Türkoğlu, N., 2020. Sabuncular Deresi Havzası'nın (Rize/Çayeli) morfometrik özelliklerinin Coğrafi Bilgi Sistemleri (CBS) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1): 14-38.
  • Özdemir, H., 2011. Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları. Sistematik ve Bölgesel (Ed., Ekinci, D.), Türk Coğrafya Kurumu Yayınları, İstanbul, s. 507–526.
  • Özhan, S., 2004. Havza Amenajmanı. İstanbul Üniversitesi Yayınları, İstanbul.
  • Pakhmode, V., Kulkarni, H., Deolankar, S.B., 2003. Hydrological-drainage analysis in watershed-programme planning: A case from the Deccan basalt, India. Hydrogeology Journal, 11: 595-604.
  • Pandey, A., Behra, S., Pandey, R.P, Singh, R.P., 2011. Application of GIS for watershed prioritization and management: A case study. International Journal of Environmental Science Development & Monitoring, 2: 25–42
  • Parvez, M.B., Inayathulla, M., 2019. Morphometry, hypsometry analysis and runoff estimation of Aam Talab watershed Raichur, Karnataka. International Journal of Advance Research and Innovative Ideas In Education, 5(3): 1713-1727. Patel, D.P., Dholakia, M.B., Naresh, N., Srivastava, P.K., 2012. Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. Journal of the Indian Society of Remote Sensing, 40: 299-312.
  • Patel, D.P., Srivastava, P.K., Gupta, M., Nandhakumar, N., 2015. Decision support system integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat. Journal of Earth System Science, 124: 71-86.
  • Patton, P.C., Baker, V.R., 1976. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12(5): 941–952.
  • Patton, P.C., 1988. Drainage basin morphometry and floods. In: Flood Geomorphology (Ed: Baker, V., Kochel, R. and Patton, P.), Wiley, New York, pp. 51-65.
  • Pike, R., Evans, I., Hengl, T., 2009. Geomorphometry: A brief guide. In: Geomorphometry: Concepts, software, applications (Ed: Hengl, T. and Reuter, H.I.), Elsevier, New York, pp. 3–30.
  • Potter, P.E., 1957. A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Journal of Geology, 65(1): 112-113.
  • Puno, G.R., Puno, R.C.C., 2019. Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management, 5(3): 279-294.
  • Radwan, F., Alazba, A.A., Mossad, A., 2017. Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arabian Journal of Geosciences, 10(12): 1-11.
  • Rai, P.K., Mishra, V.N., Mohan, K., 2017. A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications Society and Environment, 7: 9–20.
  • Raj, P.N., Azeez, P.A., 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha River Southern India. Open Journal of Modern Hydrology, 2: 91–98.
  • Rao, N.S., 2009. A numerical scheme for groundwater development in a watershed basin of basement terrain: A case study from India. Hydrogeology Journal, 17 (2): 379-396.
  • Rao, L.A., Rehman, A., Yusuf, A., 2011. Morphometric analysis of drainage basin using remote sensing and GIS techniques: A case study of Etmadpur Tehsil, Agra District, U.P. International Journal of Research in Chemistry and Environment, 1: 36-45.
  • Rather, M.A., Satish Kumar, J., Farooq, M., Rashid, H., 2017. Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arabian Journal of Geosciences, 10(3): 59.
  • Raya, A.M., Zuazo, V.H.D., Martinez, J.R.F., 2006. Soil erosion and runof response to plant-cover strips on semiarid slopes (SE Spain). Land Degradation and Development, 17:1–11.
  • Reddy, O.G.P., Maji, A.K., Gajbhiye, S.K., 2004. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1):1-16.
  • Ritter, D.F., Kochel, R.C., Miller, J.R., 2002. Process Geomorphology. McGraw Hill, Boston.
  • Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597-646.
  • Schumm, S.A., 1973. Geomorphic thresholds and complex response of drainage systems. Fluvial Geomorphology, 6: 69-85.
  • Sharma, S., Mahajan, A.K., 2020. GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7): 1-11.
  • Singh, W.R., Barman, S., Tirkey, G., 2021. Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai Watershed. Applied Water Science, 11(9):151.
  • Smith, K.G., 1950. Erozyonel topografyanın dokusunu derecelendirme standartları. Amerikan Bilim Dergisi, 248 (9): 655-668.
  • Soni, S., 2017. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7: 2089-2102.
  • Sreedevi, P.D., Subrahmanyam, K., Ahmed, S., 2004. The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3): 412-420.
  • Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117-1142.
  • Strahler, A.N., 1956. Quantitative slope analysis. Geological Society of America Bulletin, 67(5): 571-596.
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Sutradhar, S., Mondal, P., 2023. Prioritization of watersheds based on morphometric assessment in relation to flood management: A case study of Ajay river basin, Eastern India. Watershed Ecology and the Environment, 5: 1-11.
  • Thomas, J., Joseph, S., Thrivikramji, K.P., Abe, G., 2011. Morphometric analysis of the drainagesystem and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21(6):1077–1088.
  • Turoğlu, H., 1997. İyidere Havzasının Hidrografik özelliklerine sayısal yaklaşım. Türk Coğrafya Dergisi, (32): 355-364.
  • Umrikar, B.N., 2017. Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, 7(5): 2231-2243.
  • Utlu, M., Özdemir, H., 2018. Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Coğrafya Dergisi, (36): 49-62.
  • Uzun, M., 2021. İnegöl Havzasında drenaj ağı gelişimi ve flüvyal süreçlerin morfometrik analizlerle incelenmesi. Ege Coğrafya Dergisi, 30(1): 85-106.
  • Verstappen, H., 1983. Applied Geomorphology: Geomorphological Surveys for Environmental Development. Elsevier, New York.
  • Vijith, H., Satheesh, R., 2006. GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181-185.
  • Vittala, S.S., Govindaiah, S., Gowda, H.H., 2008. Prioritization of sub-watersheds for sustainable development and management of natural resources: An integrated approach using remote sensing, GIS and socio-economic data. Current Science, 345-354.
  • Yangchan, J., Tiwari, A.K., Sood, A., 2015. Morphometric analysis of drainage basin through gis: A case study of Sukhna Lake Watershed in lower Shiwalik, India. International Journal of Scientific and Engineering Research, 6(2): 1015–1023.
  • Youssef, F.B., Doumit, J.A. 2023. Morphometric analysis of hillslope evolution in the Kadisha River Basin based on archived aerial photographs. Geosystems and Geoenvironment, 2(1): 100132.
  • Yüksek, T., Özçelik, A.E., Verep, B., 2020. Fırtına havzasının bazı havza karakteristikleri ile arazilerin fizyografik özelliklere göre dağılımlarının coğrafi bilgi sistemleri ile belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5(3): 439-449.
  • Zaidi, F.K., 2011. Drainage basin morphometry for identifying zones for artificial recharge: A case study from the Gagas River Basin, India. Journal of the Geological Society of India, 77(2): 160-166.

Evaluation of morphometric parameters and erosion status in Burdur Lake Watershed

Yıl 2023, , 25 - 38, 29.03.2023
https://doi.org/10.18182/tjf.1205157

Öz

The research was carried out to determine the morphometric analysis parameters of the Burdur Lake Watershed. In addition, the erosion situation in the watershed has been evaluated with the help of morphometric parameters. The data basis of the research was created using the Digital Elevation Model (DEM) obtained from Shuttle Radar Topography Mission (SRTM). The determination of the stream indexes used in the analyzes was made via the ArcGIS 10.2 program. In this context; When the morphometric analysis results of the parameters of the linear, areal and relief morphometries of the watershed are examined; bifurcation ratio 3.42, stream length ratio 3.46, drainage density 1.25, stream frequency 0.95, form factor 0.25, gravelius index 2.66, circularity ratio 0.14, elongation ratio 0.28, basin relief 1534, relief ratio 0.013, relative relief 0.29, ruggedness number respectively 1.92 and the hypsometric integral value was found to be 0.28. In general, it has been found that the infiltration capacity of the watershed is high, stream frequency and flood sensitivity are low. In consequence of morphometric analysis, it was determined that the area had arid climatic conditions and weak vegetation. As a result, it has been concluded that the erosion risk is relatively low in most of morphometry parameters. According to these results, it can be said that morphometric analysis are an important tool for interpreting the erosion situation in the watershed.

Kaynakça

  • Agarwal, C.S., 1998. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26: 169-175.
  • Akın, M., Akın, G., 2007. Suyun önemi, Türkiye’de su potansiyeli, su havzaları ve su kirliliği. Ankara Üniversitesi Dil ve Tarih Coğrafya Fakültesi Dergisi, 47(2): 105-118.
  • Alam, A., Ahmed, B., Sammonds, P., 2021. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575: 295-307.
  • Arefin, R., Seker, D.Z., Hore, R., Meshram, S.G., 2023. GIS and remotely sensed data-based morphometric elements analysis for determination of Bengal Basin evolution. Environment, Development and Sustainability, 25: 1-34.
  • Arulbalaji, P., Gurugnanam, B., 2017. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga watershed, Cauvery River, Salem district, Tamil Nadu, India. Applied Water Science, 7(7): 3875-3883.
  • Ataol, M., 2010. Burdur Gölü Havzası için yeni bir su yönetim modeli önerisi. Doktora Tezi, Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara.
  • Avcı, V., Sunkar, M., 2015. Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30: 91-119.
  • Banerjee, A., Singh, P., Pratap, K., 2017. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: An integrated GIS-based approach. Applied Water Science, 7(4): 1807-1815.
  • Bates, N., 1981. Valley shapes. In: Practical Foundations of Physical Geography (Ed: Knap, B.), George Allen and Unwin, London, pp. 25-29. Bharath, A., Kumar, K.K., Maddamsetty, R., Manjunatha, M., Tangadagi, R.B., Preethi, S., 2021. Drainage morphometry based sub-watershed prioritization of Kalinadi Basin using geospatial technology. Environmental Challenges, 5: 100277.
  • Bhattacharya, R.K., Das Chatterjee, N., Das, K., 2019. Multi-criteria-based sub-basin prioritization and its risk assessment of erosion susceptibility in Kansai–Kumari catchment area, India. Applied Water Science, 9(4): 1-30.
  • Bishop, M.P., Shroder, J.F., Bonki, R., Olsenholler, J., 2002. Geomorphic change in high mountains: A western Himalayan perspective. Glob Planet Change, 32(4): 311-329.
  • Biswas, H., Raizada, A., Mandal, D., Kumar, S., Srinivas, S., Mishra, P.K., 2015. Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth, 6(4): 1247–1257.
  • Bogale, A., 2021. Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(7): 1-7.
  • Chandrashekar, H., Lokesh, K.V., Sameena, M., Roopa, J., Ranganna, G., 2015. GIS–based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4: 1345-1353.
  • Chorley, R.J., Dale, P.F., 1972. Cartographic problems in stream channel delineation. Cartography, 7(4): 150-162.
  • Coşkun, M., Öztürk, A., 2021. Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry, 23(1): 1-10.
  • Çoban, H.O., Eker, M., 2009. SRTM verileri ile bazı topoğrafik analizler: Isparta Orman Bölge Müdürlüğü örneği. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, A(2): 76- 91.
  • Dali, N., Ziouch, O.R., Dali, H., Daifallah, T., Cherifa, B., Sara, H., 2023. Remote sensing, and (GIS) approach, for morphometric assessment and sub-watershed prioritization according to soil erosion and groundwater potential in an endorheic semi-arid area of Algeria. Arabian Journal of Geosciences, 16(1): 95.
  • Dowling, T., Walker, J., Richardson, D.P., O'Sullivan, A., Summerell, G.K., 1998. Application of the Hypsometric Integral and Other Terrain Based Metrics as Indicators of Catchment Health: A Preliminary Analysis. CSIRO Land and Water, Technical Report 20/98, Australia.
  • Dubey, S.K., Sharma, D., Mundetia, N., 2015. Morphometric analysis of the Banas River Basin using geographical information system, Rajasthan, India. Hydrology, 3(5): 47-57.
  • Durán, Z.V.H., Francia, M.J.R., Rodríguez, P.C.R., Martínez, R.A., Cárceles, R.B., 2006. Soil erosion and runoff prevention by plant covers in a mountainous area (SE Spain): Implications for sustainable agriculture. The Environmentalist, 26: 309–319.
  • Dursun, İ., Babalık, A.A., 2021. De Martonne-Gottman ve Standart Yağış İndeksi yöntemleri kullanılarak kuraklığın belirlenmesi: Isparta ili örneği. Turkish Journal of Forestry, 22(3): 192-201.
  • Elbaşı, E., 2015. Marmara Denizi akarsu havzalarının morfometrik analizi. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul.
  • Esen, F., 2022. Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education, (47): 233-257.
  • ESRI (Enviromental Systems Research Institute), 2004. Getting Started with ArcGIS. Redlands: Enviromental Systems Research Institute Inc.265.
  • Faniran, A., 1968. The index of drainage intensity - A provisional new drainage factor. Australian Journal of Science, 31(9): 328 - 330.
  • Farhan, Y., Anbar, A., Enaba, O., Al-Shaikh, N., 2015. Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. Journal of Water Resource and Protection, 7(06): 456-475.
  • Gajbhiye, S., Mishra, S.K., Pandey, A., 2014. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Applied Water Science, 4: 51-61.
  • Ganie, P.A., Posti, R., Kunal, K., Kunal, G., Bharti, V.S., Sehgal, V.K., Pandey, P.K., 2023. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 23(1): 1-32.
  • Gayen, A., Haque, S.M., 2022. Soil erodibility assessment of laterite dominant sub-basin watersheds in the humid tropical region of India. Catena, 213: 106161.
  • Gebre, T., Kibru, T., Tesfaye, S., Taye, G., 2015. Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02): 177.
  • Görgülü, E., Göl, C., 2021. Coğrafi bilgi sistemleri ile havza morfometrik analizi: Sarayköy Göleti Havzası (Çankırı) örneği. Anadolu Orman Araştırmaları Dergisi, 7(2): 107-118.
  • Gravelius, H., 1914. Grundriß der gesamten Gewässerkunde Band 1: Flufikunde. Goschen, Berlin, Germany.
  • Hadley, R.F., Schumm, S.A., 1961. Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. U.S. Geological Survey Water Supply Paper, 153 (1B): 198.
  • Horton, R.E., 1945. Erosional development of streams and their drainage basins: Hydro-physical approach to quantitative morphology. Geological Society of American Bulletin, 56: 275-370.
  • İmamoğlu, A., 2020. Alaca Çayı Havzası erozyon durumunun morfometrik ölçümler ile ilişkisi. Avrupa Bilim ve Teknoloji Dergisi, (18): 868-878.
  • Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographical information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11): 1593-1600.
  • Joji, V.S., Nair, A.S.K., Baiju, K.V., 2013. Drainage basin delineation and quantitative analysis of Panamaram Watershed of Kabani River Basin, Kerala using remote sensing and GIS. Journal of the Geological Society of India, 82(4): 368-378.
  • Karabulut, M.S., Özdemir, H., 2019. Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18): 1-14.
  • Keller, E.A., Pinter, N., 1996. Active Tectonics: Earthquakes, Uplift and Landscape. Prentice-Hall, London.
  • Koralay, N., Kara, Ö., 2021. Effects of morphometric characteristics on flood in Degirmendere Sub-Watersheds, Northeastern Turkey. International Journal of River Basin Management, 1-11.
  • Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2011. Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environmental Earth Sciences, 64: 373-381.
  • Mayer, L., 1990. Introduction to quantitative geomorphology. NJ: Prantice-Hall International, Englewood Cliffs, New Jersey.
  • Miller, V.C., 1953. Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Varginia and Tennessee. Columbia University, Department of Geology, ONR, Geography Branch, Technical Report, NR 389042, New York.
  • Obeidat, M., Awawdeh, M., Al‐Hantouli, F., 2021. Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2): e12711.
  • Ödeker, B., Türkoğlu, N., 2020. Sabuncular Deresi Havzası'nın (Rize/Çayeli) morfometrik özelliklerinin Coğrafi Bilgi Sistemleri (CBS) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1): 14-38.
  • Özdemir, H., 2011. Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları. Sistematik ve Bölgesel (Ed., Ekinci, D.), Türk Coğrafya Kurumu Yayınları, İstanbul, s. 507–526.
  • Özhan, S., 2004. Havza Amenajmanı. İstanbul Üniversitesi Yayınları, İstanbul.
  • Pakhmode, V., Kulkarni, H., Deolankar, S.B., 2003. Hydrological-drainage analysis in watershed-programme planning: A case from the Deccan basalt, India. Hydrogeology Journal, 11: 595-604.
  • Pandey, A., Behra, S., Pandey, R.P, Singh, R.P., 2011. Application of GIS for watershed prioritization and management: A case study. International Journal of Environmental Science Development & Monitoring, 2: 25–42
  • Parvez, M.B., Inayathulla, M., 2019. Morphometry, hypsometry analysis and runoff estimation of Aam Talab watershed Raichur, Karnataka. International Journal of Advance Research and Innovative Ideas In Education, 5(3): 1713-1727. Patel, D.P., Dholakia, M.B., Naresh, N., Srivastava, P.K., 2012. Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. Journal of the Indian Society of Remote Sensing, 40: 299-312.
  • Patel, D.P., Srivastava, P.K., Gupta, M., Nandhakumar, N., 2015. Decision support system integrated with Geographic Information System to target restoration actions in watersheds of arid environment: A case study of Hathmati watershed, Sabarkantha district, Gujarat. Journal of Earth System Science, 124: 71-86.
  • Patton, P.C., Baker, V.R., 1976. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12(5): 941–952.
  • Patton, P.C., 1988. Drainage basin morphometry and floods. In: Flood Geomorphology (Ed: Baker, V., Kochel, R. and Patton, P.), Wiley, New York, pp. 51-65.
  • Pike, R., Evans, I., Hengl, T., 2009. Geomorphometry: A brief guide. In: Geomorphometry: Concepts, software, applications (Ed: Hengl, T. and Reuter, H.I.), Elsevier, New York, pp. 3–30.
  • Potter, P.E., 1957. A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Journal of Geology, 65(1): 112-113.
  • Puno, G.R., Puno, R.C.C., 2019. Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management, 5(3): 279-294.
  • Radwan, F., Alazba, A.A., Mossad, A., 2017. Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arabian Journal of Geosciences, 10(12): 1-11.
  • Rai, P.K., Mishra, V.N., Mohan, K., 2017. A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications Society and Environment, 7: 9–20.
  • Raj, P.N., Azeez, P.A., 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha River Southern India. Open Journal of Modern Hydrology, 2: 91–98.
  • Rao, N.S., 2009. A numerical scheme for groundwater development in a watershed basin of basement terrain: A case study from India. Hydrogeology Journal, 17 (2): 379-396.
  • Rao, L.A., Rehman, A., Yusuf, A., 2011. Morphometric analysis of drainage basin using remote sensing and GIS techniques: A case study of Etmadpur Tehsil, Agra District, U.P. International Journal of Research in Chemistry and Environment, 1: 36-45.
  • Rather, M.A., Satish Kumar, J., Farooq, M., Rashid, H., 2017. Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arabian Journal of Geosciences, 10(3): 59.
  • Raya, A.M., Zuazo, V.H.D., Martinez, J.R.F., 2006. Soil erosion and runof response to plant-cover strips on semiarid slopes (SE Spain). Land Degradation and Development, 17:1–11.
  • Reddy, O.G.P., Maji, A.K., Gajbhiye, S.K., 2004. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1):1-16.
  • Ritter, D.F., Kochel, R.C., Miller, J.R., 2002. Process Geomorphology. McGraw Hill, Boston.
  • Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597-646.
  • Schumm, S.A., 1973. Geomorphic thresholds and complex response of drainage systems. Fluvial Geomorphology, 6: 69-85.
  • Sharma, S., Mahajan, A.K., 2020. GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7): 1-11.
  • Singh, W.R., Barman, S., Tirkey, G., 2021. Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai Watershed. Applied Water Science, 11(9):151.
  • Smith, K.G., 1950. Erozyonel topografyanın dokusunu derecelendirme standartları. Amerikan Bilim Dergisi, 248 (9): 655-668.
  • Soni, S., 2017. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7: 2089-2102.
  • Sreedevi, P.D., Subrahmanyam, K., Ahmed, S., 2004. The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3): 412-420.
  • Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117-1142.
  • Strahler, A.N., 1956. Quantitative slope analysis. Geological Society of America Bulletin, 67(5): 571-596.
  • Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Sutradhar, S., Mondal, P., 2023. Prioritization of watersheds based on morphometric assessment in relation to flood management: A case study of Ajay river basin, Eastern India. Watershed Ecology and the Environment, 5: 1-11.
  • Thomas, J., Joseph, S., Thrivikramji, K.P., Abe, G., 2011. Morphometric analysis of the drainagesystem and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21(6):1077–1088.
  • Turoğlu, H., 1997. İyidere Havzasının Hidrografik özelliklerine sayısal yaklaşım. Türk Coğrafya Dergisi, (32): 355-364.
  • Umrikar, B.N., 2017. Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, 7(5): 2231-2243.
  • Utlu, M., Özdemir, H., 2018. Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Coğrafya Dergisi, (36): 49-62.
  • Uzun, M., 2021. İnegöl Havzasında drenaj ağı gelişimi ve flüvyal süreçlerin morfometrik analizlerle incelenmesi. Ege Coğrafya Dergisi, 30(1): 85-106.
  • Verstappen, H., 1983. Applied Geomorphology: Geomorphological Surveys for Environmental Development. Elsevier, New York.
  • Vijith, H., Satheesh, R., 2006. GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181-185.
  • Vittala, S.S., Govindaiah, S., Gowda, H.H., 2008. Prioritization of sub-watersheds for sustainable development and management of natural resources: An integrated approach using remote sensing, GIS and socio-economic data. Current Science, 345-354.
  • Yangchan, J., Tiwari, A.K., Sood, A., 2015. Morphometric analysis of drainage basin through gis: A case study of Sukhna Lake Watershed in lower Shiwalik, India. International Journal of Scientific and Engineering Research, 6(2): 1015–1023.
  • Youssef, F.B., Doumit, J.A. 2023. Morphometric analysis of hillslope evolution in the Kadisha River Basin based on archived aerial photographs. Geosystems and Geoenvironment, 2(1): 100132.
  • Yüksek, T., Özçelik, A.E., Verep, B., 2020. Fırtına havzasının bazı havza karakteristikleri ile arazilerin fizyografik özelliklere göre dağılımlarının coğrafi bilgi sistemleri ile belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 5(3): 439-449.
  • Zaidi, F.K., 2011. Drainage basin morphometry for identifying zones for artificial recharge: A case study from the Gagas River Basin, India. Journal of the Geological Society of India, 77(2): 160-166.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

İbrahim Dursun 0000-0003-2261-1112

Ahmet Alper Babalık 0000-0001-9365-1088

Yayımlanma Tarihi 29 Mart 2023
Kabul Tarihi 13 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dursun, İ., & Babalık, A. A. (2023). Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry, 24(1), 25-38. https://doi.org/10.18182/tjf.1205157
AMA Dursun İ, Babalık AA. Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry. Mart 2023;24(1):25-38. doi:10.18182/tjf.1205157
Chicago Dursun, İbrahim, ve Ahmet Alper Babalık. “Burdur Gölü Havzasındaki Morfometrik Parametrelerin Ve Erozyon Durumunun değerlendirilmesi”. Turkish Journal of Forestry 24, sy. 1 (Mart 2023): 25-38. https://doi.org/10.18182/tjf.1205157.
EndNote Dursun İ, Babalık AA (01 Mart 2023) Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry 24 1 25–38.
IEEE İ. Dursun ve A. A. Babalık, “Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi”, Turkish Journal of Forestry, c. 24, sy. 1, ss. 25–38, 2023, doi: 10.18182/tjf.1205157.
ISNAD Dursun, İbrahim - Babalık, Ahmet Alper. “Burdur Gölü Havzasındaki Morfometrik Parametrelerin Ve Erozyon Durumunun değerlendirilmesi”. Turkish Journal of Forestry 24/1 (Mart 2023), 25-38. https://doi.org/10.18182/tjf.1205157.
JAMA Dursun İ, Babalık AA. Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry. 2023;24:25–38.
MLA Dursun, İbrahim ve Ahmet Alper Babalık. “Burdur Gölü Havzasındaki Morfometrik Parametrelerin Ve Erozyon Durumunun değerlendirilmesi”. Turkish Journal of Forestry, c. 24, sy. 1, 2023, ss. 25-38, doi:10.18182/tjf.1205157.
Vancouver Dursun İ, Babalık AA. Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Turkish Journal of Forestry. 2023;24(1):25-38.

Cited By