Research Article
BibTex RIS Cite

EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES

Year 2022, , 33 - 40, 20.06.2022
https://doi.org/10.17557/tjfc.1002061

Abstract

In order to evaluate the antioxidant activity of wheat in salinity stress conditions, an experiment with 27 wheat
genotypes grown on two types of soil was conducted: solonetz (increased salinity) and chernozem (control),
during two vegetation seasons (2015/2016 and 2016/2017). Analysis of DPPH radical scavenging activity and
phenolic content (PC) were performed in different phenophases of wheat (tillering, stem elongation and
heading). Genotypes showed significantly higher DPPH radical scavenging activity (9.82 mg trolox equivalents
(TE) per mg of dry matter (d.m.)) and PC (8.15 mg gallic acid equivalents (GAE) per mg d.m.) under salinity
stress conditions compared to values obtained on control (8.52 mg TE mg-1 d.m. and 7.13 mg GAE mg-1 d.m.,
respectively). All analyzed factors (genotype, soil type and year) had the highly significant influence on
phenotypic variation of grain yield. Salinity stress reduced grain yield by 30%, whereas drought stress in
2016/2017 vegetation season reduced grain yield by 20%. Highly significant and positive correlations are
present between grain yield and parameters of antioxidant activity in all growth stages of wheat and both soil
conditions. Therefore, it could be possible to select salinity tolerant genotypes in early growth stages. DPPH
scavenging activity and total phenolic content are in highly significant and positive correlation in all growth
stages, which indicates that antioxidant activity is highly derived by phenolics. 

Supporting Institution

Ministry of Education, Science and Technology Development of Republic of Serbia

Project Number

31092

Thanks

Ministry of Education, Science and Technology Development of Republic of Serbia

References

  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27:84-93.
  • Azizpour, K., M.R. Shakiba, K.N. Sima, H. Alyari, M. Moghaddam, E. Esfandiari and M. Pessarakli. 2010. Physiological response of spring durum wheat genotypes to salinity. J. Plant. Nutr. 33:859-873.
  • Banjac, B. 2015. Yield potential and adaptation of wheat to stressful conditions of solonetzes: doctoral dissertation. University of Novi Sad, Faculty of agriculture, Serbia (in Serbian).
  • Barakat, N., V. Laudadio, E. Cazzato and V. Tufarelli. 2013. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum) treated with phytohormones under salt-stress condition. Int. J. Agric. Biol. 15:843-849.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović and B. Pejić. 2006. The -influence of water- physical properties changes of solonetz on the yield and yield components of wheat after phosphogypsum application. In: The natural mineral row materials and possibilities of theirs application in agricultural production and food industry, 165-177. Union of agricultural engineers and technicians of Serbia and Geological Institute, Belgrade, Serbia.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović, V. Ćirić, S. Pekeč and J. Vasin. 2012. Impact of reclamation practices on the content and qualitative composition of exchangeable base cations of the solonetz soil. Aust. J. Crop. Sci. 6:1471-1480.
  • Belić, M., Lj. Nešić, V. and Ćirić. 2014. Types of halomorphic soils. In: Repair of halomorphic soils, ed. M. Manojlović, 12-37. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia (in Serbian).
  • Borzouei, A., M. Kafi, E. Akbari-Ghogdi and M. Mousavi-Shalmani. 2012. Long term salinity stress in relation to lipid peroxidation, superoxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars. Chil. J. Agric. Res. 72:476-482.
  • Caverzan, A., A. Casassola and S. Patussi Brammer. 2016. Antioxidant responses of wheat plants under stress. Gene. Mol. Biol. 39:1-6.
  • Chernane, H., S. Latique, M. Mansori and M. El Kaoua. 2015. Salt stress tolerance and antioxidative mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J. Agric. Vet. Sci. 8:36-44.
  • Chesworth, W. 2008. Encyclopedia of Earth Sciences Series: Encyclopedia of Soil Science. Springer, Dordrecht, Netherlands.
  • Dimitrijević, M., S. Petrović and B. Banjac. 2012. Wheat breeding in abiotic stress conditions of solonetz. Genetika, 44:91-100.
  • Dixon, J., H.J. Braun and J. Crouch. 2009. Overview: Transitioning wheat research to serve the future needs of the developing world. In: Wheat facts and futures, eds. J. Dixon, H.J. Braun, P. Kosina and J. Crouch, 1-25, D. F., CIMMYT, Mexico.
  • El-Hendawy, S.E., Y. Hu, J.I. Sakagami and U. Schimidhalter. 2011. Screening Egyptian wheat genotypes for salt tolerance at early growth stages. Int. J. Plant Prod., 5:1735-8043.
  • El-Sayed, M.D. and M.M. Abdel-Rahman. 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J. Agric. Sci. 7:203-217.
  • Hadžić, V., Lj. Nešić, M. Belić, T. Furman and L. Savin. 2002. Land potential of Serbia. Traktori i pogonske mašine, 7:43-51. (in Serbian)
  • Hagerman, A., I. Harvey-Mueller and H.P.S. Makkar. 2000. Quantification of tannins in tree foliage – a Laboratory manual, FAO/IAEA, Vienna, Austria.
  • IBM SPSS Statistics 22.0, trial version, https://www.ibm.com/analytics/spss-trials, (Accessed May 25, 2020)
  • Khayatnezhad, M. and R. Gholamin. 2010. Study of NaCl salinity effect on wheat (Triticum aestivum L.) cultivars ar germination stage. Am. Eurasian J. Agric. Environ. Sci. 9:128-132.
  • Kumar, S., A.S. Beena, M. Awana and A. Singh. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant. Sci. 8:1151.
  • Lee, S., Z. Mbwambo, H. Chung, L. Luyengi, E. Gamez, R. Mehta, A. Kinghorn and J. Pezzuto 1998. Evaluation of the antioxidant potential of natural products. Comb. Chem. High T. Scr. 1:35-46.
  • Miljković, N.S. 1996. Fundamentals of pedology. Faculty of natural sciences, Institute of geography, Novi Sad, Serbia. (in Serbian)
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7:405-410.
  • Mittler, R., S. Vanderauwera, M. Gollery and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant. Sci. 9:490-498.
  • Mohamed, A.A. and A.A. Aly. 2008. Alternations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am. Eurasian J. Sci. Res. 3:139-146.
  • Petrović, S., M. Dimitrijević and B. Banjac. 2016. Variability and interrelationship of yield components in wheat grown on solonetz and chernozem soil. Ann. Agron. 40:47-52. (in Serbian)
  • Rao, A., S.D. Ahmad, S.M. Sabir, S. Awan, A.H. Shah, M.F. Khan, S.A. Khan, S. Shafique, S. Arif, S.R. Abbas and M. Gohar. 2013. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. J. Med. Plants Res. 74:155-164.
  • RHMZ 2020. Republic Hydrometeorological Service of Serbia, http://www.hidmet.gov.rs/, (Accessed May 20, 2020)
  • Rose, C. 2004. An Introduction to the Environmental Physics of Soil. Water and Watersheds. Cambridge (GB): Cambridge University Press.
  • Tester, M and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503-527.
  • Tóth, G., L. Montanarella, V. Stolbovoy, F. Máté, K. Bódis, A. Jones, P. Panagos, M. Van and M. Liedekerke. 2008. Soils of the European Union. Office for Official publications of the European Communities, Luxembourg.
  • Turki, N., M. Harrabi, O. Kazutoshi. 2012. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J. Arid Land Stud. 22:311-314.
  • Turkylmaz, B., L. Yildiz Aktas and A. Guven. 2011. Salinity induced differences in growth and nutrient accumulation in five barley cultivars. Turk. J. Field Crops. 16(1):84-92.
  • Zendehbad, S.H., M.J. Mehran and S. Malla. 2014. Flavonoids and phenolic content in wheat grass plant (Triticum aestivum). Asian J. Pharm. Chlin. Res. 7:184-187.
  • Zieliński, H and H. Kozłowska. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 48:2008-2016.
Year 2022, , 33 - 40, 20.06.2022
https://doi.org/10.17557/tjfc.1002061

Abstract

Project Number

31092

References

  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27:84-93.
  • Azizpour, K., M.R. Shakiba, K.N. Sima, H. Alyari, M. Moghaddam, E. Esfandiari and M. Pessarakli. 2010. Physiological response of spring durum wheat genotypes to salinity. J. Plant. Nutr. 33:859-873.
  • Banjac, B. 2015. Yield potential and adaptation of wheat to stressful conditions of solonetzes: doctoral dissertation. University of Novi Sad, Faculty of agriculture, Serbia (in Serbian).
  • Barakat, N., V. Laudadio, E. Cazzato and V. Tufarelli. 2013. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum) treated with phytohormones under salt-stress condition. Int. J. Agric. Biol. 15:843-849.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović and B. Pejić. 2006. The -influence of water- physical properties changes of solonetz on the yield and yield components of wheat after phosphogypsum application. In: The natural mineral row materials and possibilities of theirs application in agricultural production and food industry, 165-177. Union of agricultural engineers and technicians of Serbia and Geological Institute, Belgrade, Serbia.
  • Belić, M., Lj. Nešić, M. Dimitrijević, S. Petrović, V. Ćirić, S. Pekeč and J. Vasin. 2012. Impact of reclamation practices on the content and qualitative composition of exchangeable base cations of the solonetz soil. Aust. J. Crop. Sci. 6:1471-1480.
  • Belić, M., Lj. Nešić, V. and Ćirić. 2014. Types of halomorphic soils. In: Repair of halomorphic soils, ed. M. Manojlović, 12-37. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia (in Serbian).
  • Borzouei, A., M. Kafi, E. Akbari-Ghogdi and M. Mousavi-Shalmani. 2012. Long term salinity stress in relation to lipid peroxidation, superoxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars. Chil. J. Agric. Res. 72:476-482.
  • Caverzan, A., A. Casassola and S. Patussi Brammer. 2016. Antioxidant responses of wheat plants under stress. Gene. Mol. Biol. 39:1-6.
  • Chernane, H., S. Latique, M. Mansori and M. El Kaoua. 2015. Salt stress tolerance and antioxidative mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J. Agric. Vet. Sci. 8:36-44.
  • Chesworth, W. 2008. Encyclopedia of Earth Sciences Series: Encyclopedia of Soil Science. Springer, Dordrecht, Netherlands.
  • Dimitrijević, M., S. Petrović and B. Banjac. 2012. Wheat breeding in abiotic stress conditions of solonetz. Genetika, 44:91-100.
  • Dixon, J., H.J. Braun and J. Crouch. 2009. Overview: Transitioning wheat research to serve the future needs of the developing world. In: Wheat facts and futures, eds. J. Dixon, H.J. Braun, P. Kosina and J. Crouch, 1-25, D. F., CIMMYT, Mexico.
  • El-Hendawy, S.E., Y. Hu, J.I. Sakagami and U. Schimidhalter. 2011. Screening Egyptian wheat genotypes for salt tolerance at early growth stages. Int. J. Plant Prod., 5:1735-8043.
  • El-Sayed, M.D. and M.M. Abdel-Rahman. 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J. Agric. Sci. 7:203-217.
  • Hadžić, V., Lj. Nešić, M. Belić, T. Furman and L. Savin. 2002. Land potential of Serbia. Traktori i pogonske mašine, 7:43-51. (in Serbian)
  • Hagerman, A., I. Harvey-Mueller and H.P.S. Makkar. 2000. Quantification of tannins in tree foliage – a Laboratory manual, FAO/IAEA, Vienna, Austria.
  • IBM SPSS Statistics 22.0, trial version, https://www.ibm.com/analytics/spss-trials, (Accessed May 25, 2020)
  • Khayatnezhad, M. and R. Gholamin. 2010. Study of NaCl salinity effect on wheat (Triticum aestivum L.) cultivars ar germination stage. Am. Eurasian J. Agric. Environ. Sci. 9:128-132.
  • Kumar, S., A.S. Beena, M. Awana and A. Singh. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant. Sci. 8:1151.
  • Lee, S., Z. Mbwambo, H. Chung, L. Luyengi, E. Gamez, R. Mehta, A. Kinghorn and J. Pezzuto 1998. Evaluation of the antioxidant potential of natural products. Comb. Chem. High T. Scr. 1:35-46.
  • Miljković, N.S. 1996. Fundamentals of pedology. Faculty of natural sciences, Institute of geography, Novi Sad, Serbia. (in Serbian)
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7:405-410.
  • Mittler, R., S. Vanderauwera, M. Gollery and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant. Sci. 9:490-498.
  • Mohamed, A.A. and A.A. Aly. 2008. Alternations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am. Eurasian J. Sci. Res. 3:139-146.
  • Petrović, S., M. Dimitrijević and B. Banjac. 2016. Variability and interrelationship of yield components in wheat grown on solonetz and chernozem soil. Ann. Agron. 40:47-52. (in Serbian)
  • Rao, A., S.D. Ahmad, S.M. Sabir, S. Awan, A.H. Shah, M.F. Khan, S.A. Khan, S. Shafique, S. Arif, S.R. Abbas and M. Gohar. 2013. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. J. Med. Plants Res. 74:155-164.
  • RHMZ 2020. Republic Hydrometeorological Service of Serbia, http://www.hidmet.gov.rs/, (Accessed May 20, 2020)
  • Rose, C. 2004. An Introduction to the Environmental Physics of Soil. Water and Watersheds. Cambridge (GB): Cambridge University Press.
  • Tester, M and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503-527.
  • Tóth, G., L. Montanarella, V. Stolbovoy, F. Máté, K. Bódis, A. Jones, P. Panagos, M. Van and M. Liedekerke. 2008. Soils of the European Union. Office for Official publications of the European Communities, Luxembourg.
  • Turki, N., M. Harrabi, O. Kazutoshi. 2012. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J. Arid Land Stud. 22:311-314.
  • Turkylmaz, B., L. Yildiz Aktas and A. Guven. 2011. Salinity induced differences in growth and nutrient accumulation in five barley cultivars. Turk. J. Field Crops. 16(1):84-92.
  • Zendehbad, S.H., M.J. Mehran and S. Malla. 2014. Flavonoids and phenolic content in wheat grass plant (Triticum aestivum). Asian J. Pharm. Chlin. Res. 7:184-187.
  • Zieliński, H and H. Kozłowska. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 48:2008-2016.
There are 35 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Articles
Authors

Mirela Matković Stojšin 0000-0003-3431-289X

Sofija Petrović This is me

Miodrag Dimitrijević This is me

Jovana šućur This is me 0000-0002-7666-102X

Djordje Malenčić This is me 0000-0002-5998-8450

Veselinka Zečević This is me 0000-0002-6782-6654

Borislav Banjac This is me

Desimir Knežević This is me 0000-0001-8471-9060

Project Number 31092
Publication Date June 20, 2022
Published in Issue Year 2022

Cite

APA Matković Stojšin, M., Petrović, S., Dimitrijević, M., šućur, J., et al. (2022). EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES. Turkish Journal Of Field Crops, 27(1), 33-40. https://doi.org/10.17557/tjfc.1002061
AMA Matković Stojšin M, Petrović S, Dimitrijević M, šućur J, Malenčić D, Zečević V, Banjac B, Knežević D. EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES. TJFC. June 2022;27(1):33-40. doi:10.17557/tjfc.1002061
Chicago Matković Stojšin, Mirela, Sofija Petrović, Miodrag Dimitrijević, Jovana šućur, Djordje Malenčić, Veselinka Zečević, Borislav Banjac, and Desimir Knežević. “EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES”. Turkish Journal Of Field Crops 27, no. 1 (June 2022): 33-40. https://doi.org/10.17557/tjfc.1002061.
EndNote Matković Stojšin M, Petrović S, Dimitrijević M, šućur J, Malenčić D, Zečević V, Banjac B, Knežević D (June 1, 2022) EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES. Turkish Journal Of Field Crops 27 1 33–40.
IEEE M. Matković Stojšin, S. Petrović, M. Dimitrijević, J. šućur, D. Malenčić, V. Zečević, B. Banjac, and D. Knežević, “EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES”, TJFC, vol. 27, no. 1, pp. 33–40, 2022, doi: 10.17557/tjfc.1002061.
ISNAD Matković Stojšin, Mirela et al. “EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES”. Turkish Journal Of Field Crops 27/1 (June 2022), 33-40. https://doi.org/10.17557/tjfc.1002061.
JAMA Matković Stojšin M, Petrović S, Dimitrijević M, šućur J, Malenčić D, Zečević V, Banjac B, Knežević D. EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES. TJFC. 2022;27:33–40.
MLA Matković Stojšin, Mirela et al. “EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES”. Turkish Journal Of Field Crops, vol. 27, no. 1, 2022, pp. 33-40, doi:10.17557/tjfc.1002061.
Vancouver Matković Stojšin M, Petrović S, Dimitrijević M, šućur J, Malenčić D, Zečević V, Banjac B, Knežević D. EFFECT OF SALINITY STRESS ON ANTIOXIDANT ACTIVITY AND GRAIN YIELD OF DIFFERENT WHEAT GENOTYPES. TJFC. 2022;27(1):33-40.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474