Research Article
BibTex RIS Cite

GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE

Year 2021, , 218 - 225, 27.12.2021
https://doi.org/10.17557/tjfc.1033784

Abstract

This study was aimed at obtaining information on the effects of G × E interaction on yield among doubled haploid lines (DH) of lowland rice and to obtain stable and high yielding lines. The experiment was conducted in 9 environments (E), namely Indramayu (2018), Subang (2018), Malang I (2018), Malang II (2019), Blitar (2019), Cianjur (2019), Lombok (2019), Bali (2019), and Madiun (2019). A randomized complete block design with 3 replications was used in each location. The genotypes evaluated were fourteen doubled haploid rice lines and two check varieties namely Ciherang and Inpari 18. The results of the combined analysis of variance indicated significant effects of genotype (G), environment (E), and genotype × environment (G × E) interactions on grain yield. G1, G4, G9, G10, G11, G12, G13, and G14 DH lines had higher genotype mean yield than the average. Among those genotypes, the DH line of G9 was classified as high yielding, stable, and widely adapted in all locations based on Francis and Kannenberg, Finlay-Wilkinson, Eberhart-Russell, Kang, and AMMI analyses.

References

  • Ajmera, S., S.S. Kumar and V. Ravindrababu. 2017. Studies on stability analysis for grain yield and its attributes in rice (Oryza sativa L.) genotypes. International Journal of Pure & Applied Bioscience 5(4): 892-908.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno and Sugiyanta. 2018. Agronomic and drought tolerance evaluation of doubled haploid rice breeding lines derived from anther culture. SABRAO J Breed Genet. 50(2): 115-128.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno and Sugiyanta. 2019. Selection of doubled haploid lines of rainfed lowland rice in preliminary yield trial. Biodiversitas. 20(10): 2796-2801.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno, Sugiyanta and M.F. Anshori. 2021. Agronomic and yield selection of doubled haploid lines of rainfed lowland rice in advanced yield trials. Biodiversitas 22(7): 3006-3012. Babarmanzoor, A., M.S. Tariq, A. Ghulam and A. Muhammad. 2009. Genotype × environment interaction for seed yield in Kabuli Chickpea (Cicer arietinum L.) genotypes developed through mutation breeding. Pakistan J Botany. 41:1883-1890.
  • Bose, L.K., N.N. Jambhulkar, K. Pande and O.N. Singh. 2014. Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research. 74(1): 3-9.
  • Crossa, J., H.G. Gauch and R.W. Zobel. 1990. Additive main effects and multiplicative interactions analysis of two international maize cultivar trials. Crop Sci. 30:493-500.
  • Dewi, I.S. and B.S. Purwoko. 2012. Anther culture to accelerate rice breeding in Indonesia. Jurnal AgroBiogen. 8(2):78-88. (Abstract in English)
  • Gunarsih, C., B.S. Purwoko, I.S. Dewi and M. Syukur. 2016. Plantlet regeneration and acclimatization in rice anther culture of 6 F1s. J Agron Indon. 44(2):133-140. (Abstract in English )
  • Eberhart, S. A. and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36-40.
  • Erdemci, I. 2018. Investigation of genotype × environment interaction in Chickpea genotypes using AMMI and GGE biplot analysis. Turk J Field Crops. 23(1):20-26.
  • FAO. 2017. FAO statistic. http://www.fao.org/faostat/en/#data/QC, access on 18 June 2019.
  • Farshadfar, E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan J Biological Science. 11:1791-1796.
  • Farshadfar, E. and J. Sutka. 2006. Biplot analysis of genotype environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica 54, 459-467.
  • Finlay, K. W. and G.N. Wilkinson. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research. 14:742-754.
  • Fox, P.N., J. Crossa and I. Ramagosa. 1997. Multi environment testing and genotype 9 environment interaction. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. London: Chapman and Hall. 117-138.
  • Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics. 44:705-715.
  • Gauch, H.G. 2013. A simple protocol for AMMI analysis of yield trials. Crop Sci. 53: 1860-1869.
  • Goksoy, A.T., M. Sincik, M. Erdogmus, M. Ergin, S. Aytac, G. Gumuscu, O. Gunduz, R. Keles, G. Bayram and E. Senyigit. 2019. The parametric and non-parametric stability analyses for interpreting genotype by environment interaction of some soybean genotypes. Turk J Field Crops. 24(1): 28-38
  • Ilker, E., H. Geren, R. Unsal, I. Sevim, F.A. Tonk and M. Tosun. 2011. AMMI-biplot analysis of yield performances of bread wheat cultivars grown at different locations. Turk J Field Crops. 16(1): 64-68.
  • Kang, M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal. 85:754-757.
  • Karimizadeh, R., A. Asghari, R. Chinipardaz, O. Sofalian and A. Ghaffari. 2016. Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turk J Field Crops. 21(2):174-183.
  • Lin, C. S., M.R. Binns, L.P. Lefkovitch. 1986. Stability analysis: Where do we stand? Crop Sci. 26:894-900.
  • Ministry of Agriculture Republic of Indonesia. 2018. Agricultural statistics 2018. Indonesia: Center for Agricultural Data and Information System, Ministry of Agriculture Republic of Indonesia.
  • Mohammadi, R. and A. Amri. 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 159:419-432.
  • Mohammadi, M., R. Karimizadeh, N. Sabaghnia and M.K. Shefazadeh. 2012. Genotype and environment interaction and yield stability analysis of new improved bread wheat genotypes. Turk J Field Crops. 17(1):67-73.
  • Sayar, M. S., A.E. Anlarsal and M. Basbag. 2013. Genotype-environment interactions and stability analysis for dry-matter yield and seed yield in Hungarian vetch (Vicia pannonica Crantz.). Turk J Field Crops. 18(2):238-246.
  • Sharifi, P., H. Aminpanah, R. Erfani, A. Mohaddesi and A. Abbasian. 2017. Evaluation of genotype × environment interaction in rice based on AMMI model in Iran. Rice Sci. 24(3): 173-80.
  • Shukla, G.K. 1972. Some aspects of partitioning genotype environmental components of variability. Heredity 28:237-245.
  • Tariku, S., T. Lakew, M. Bitew and M. Asfaw. 2013. Genotype by environment interaction and grain yield stability analysis of rice (Oryza sativa L.) genotypes evaluated in north western Ethiopia. Ethiopian J Agric Sci. 1(1):10–16.
  • Yan, W.K. and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists and agronomists. Boca Raton (USA): CRC Press
  • Zobel, R.W., M.J. Wright and H.G.Jr. Gauch. 1988. Statistical analysis of yield trial. Agronomy Journal 80: 388-393.
Year 2021, , 218 - 225, 27.12.2021
https://doi.org/10.17557/tjfc.1033784

Abstract

References

  • Ajmera, S., S.S. Kumar and V. Ravindrababu. 2017. Studies on stability analysis for grain yield and its attributes in rice (Oryza sativa L.) genotypes. International Journal of Pure & Applied Bioscience 5(4): 892-908.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno and Sugiyanta. 2018. Agronomic and drought tolerance evaluation of doubled haploid rice breeding lines derived from anther culture. SABRAO J Breed Genet. 50(2): 115-128.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno and Sugiyanta. 2019. Selection of doubled haploid lines of rainfed lowland rice in preliminary yield trial. Biodiversitas. 20(10): 2796-2801.
  • Akbar, M.R., B.S. Purwoko, I.S. Dewi, W.B. Suwarno, Sugiyanta and M.F. Anshori. 2021. Agronomic and yield selection of doubled haploid lines of rainfed lowland rice in advanced yield trials. Biodiversitas 22(7): 3006-3012. Babarmanzoor, A., M.S. Tariq, A. Ghulam and A. Muhammad. 2009. Genotype × environment interaction for seed yield in Kabuli Chickpea (Cicer arietinum L.) genotypes developed through mutation breeding. Pakistan J Botany. 41:1883-1890.
  • Bose, L.K., N.N. Jambhulkar, K. Pande and O.N. Singh. 2014. Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research. 74(1): 3-9.
  • Crossa, J., H.G. Gauch and R.W. Zobel. 1990. Additive main effects and multiplicative interactions analysis of two international maize cultivar trials. Crop Sci. 30:493-500.
  • Dewi, I.S. and B.S. Purwoko. 2012. Anther culture to accelerate rice breeding in Indonesia. Jurnal AgroBiogen. 8(2):78-88. (Abstract in English)
  • Gunarsih, C., B.S. Purwoko, I.S. Dewi and M. Syukur. 2016. Plantlet regeneration and acclimatization in rice anther culture of 6 F1s. J Agron Indon. 44(2):133-140. (Abstract in English )
  • Eberhart, S. A. and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36-40.
  • Erdemci, I. 2018. Investigation of genotype × environment interaction in Chickpea genotypes using AMMI and GGE biplot analysis. Turk J Field Crops. 23(1):20-26.
  • FAO. 2017. FAO statistic. http://www.fao.org/faostat/en/#data/QC, access on 18 June 2019.
  • Farshadfar, E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan J Biological Science. 11:1791-1796.
  • Farshadfar, E. and J. Sutka. 2006. Biplot analysis of genotype environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica 54, 459-467.
  • Finlay, K. W. and G.N. Wilkinson. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research. 14:742-754.
  • Fox, P.N., J. Crossa and I. Ramagosa. 1997. Multi environment testing and genotype 9 environment interaction. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. London: Chapman and Hall. 117-138.
  • Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics. 44:705-715.
  • Gauch, H.G. 2013. A simple protocol for AMMI analysis of yield trials. Crop Sci. 53: 1860-1869.
  • Goksoy, A.T., M. Sincik, M. Erdogmus, M. Ergin, S. Aytac, G. Gumuscu, O. Gunduz, R. Keles, G. Bayram and E. Senyigit. 2019. The parametric and non-parametric stability analyses for interpreting genotype by environment interaction of some soybean genotypes. Turk J Field Crops. 24(1): 28-38
  • Ilker, E., H. Geren, R. Unsal, I. Sevim, F.A. Tonk and M. Tosun. 2011. AMMI-biplot analysis of yield performances of bread wheat cultivars grown at different locations. Turk J Field Crops. 16(1): 64-68.
  • Kang, M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal. 85:754-757.
  • Karimizadeh, R., A. Asghari, R. Chinipardaz, O. Sofalian and A. Ghaffari. 2016. Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turk J Field Crops. 21(2):174-183.
  • Lin, C. S., M.R. Binns, L.P. Lefkovitch. 1986. Stability analysis: Where do we stand? Crop Sci. 26:894-900.
  • Ministry of Agriculture Republic of Indonesia. 2018. Agricultural statistics 2018. Indonesia: Center for Agricultural Data and Information System, Ministry of Agriculture Republic of Indonesia.
  • Mohammadi, R. and A. Amri. 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 159:419-432.
  • Mohammadi, M., R. Karimizadeh, N. Sabaghnia and M.K. Shefazadeh. 2012. Genotype and environment interaction and yield stability analysis of new improved bread wheat genotypes. Turk J Field Crops. 17(1):67-73.
  • Sayar, M. S., A.E. Anlarsal and M. Basbag. 2013. Genotype-environment interactions and stability analysis for dry-matter yield and seed yield in Hungarian vetch (Vicia pannonica Crantz.). Turk J Field Crops. 18(2):238-246.
  • Sharifi, P., H. Aminpanah, R. Erfani, A. Mohaddesi and A. Abbasian. 2017. Evaluation of genotype × environment interaction in rice based on AMMI model in Iran. Rice Sci. 24(3): 173-80.
  • Shukla, G.K. 1972. Some aspects of partitioning genotype environmental components of variability. Heredity 28:237-245.
  • Tariku, S., T. Lakew, M. Bitew and M. Asfaw. 2013. Genotype by environment interaction and grain yield stability analysis of rice (Oryza sativa L.) genotypes evaluated in north western Ethiopia. Ethiopian J Agric Sci. 1(1):10–16.
  • Yan, W.K. and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists and agronomists. Boca Raton (USA): CRC Press
  • Zobel, R.W., M.J. Wright and H.G.Jr. Gauch. 1988. Statistical analysis of yield trial. Agronomy Journal 80: 388-393.
There are 31 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Bambang Sapta Purwoko 0000-0001-6103-5926

Miftahur Rizqi Akbar This is me 0000-0002-3137-8677

Publication Date December 27, 2021
Published in Issue Year 2021

Cite

APA Purwoko, B. S., & Akbar, M. R. (2021). GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE. Turkish Journal Of Field Crops, 26(2), 218-225. https://doi.org/10.17557/tjfc.1033784
AMA Purwoko BS, Akbar MR. GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE. TJFC. December 2021;26(2):218-225. doi:10.17557/tjfc.1033784
Chicago Purwoko, Bambang Sapta, and Miftahur Rizqi Akbar. “GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE”. Turkish Journal Of Field Crops 26, no. 2 (December 2021): 218-25. https://doi.org/10.17557/tjfc.1033784.
EndNote Purwoko BS, Akbar MR (December 1, 2021) GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE. Turkish Journal Of Field Crops 26 2 218–225.
IEEE B. S. Purwoko and M. R. Akbar, “GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE”, TJFC, vol. 26, no. 2, pp. 218–225, 2021, doi: 10.17557/tjfc.1033784.
ISNAD Purwoko, Bambang Sapta - Akbar, Miftahur Rizqi. “GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE”. Turkish Journal Of Field Crops 26/2 (December 2021), 218-225. https://doi.org/10.17557/tjfc.1033784.
JAMA Purwoko BS, Akbar MR. GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE. TJFC. 2021;26:218–225.
MLA Purwoko, Bambang Sapta and Miftahur Rizqi Akbar. “GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE”. Turkish Journal Of Field Crops, vol. 26, no. 2, 2021, pp. 218-25, doi:10.17557/tjfc.1033784.
Vancouver Purwoko BS, Akbar MR. GENOTYPE × ENVIRONMENT INTERACTION AND STABILITY ANALYSIS FOR HIGH YIELDING DOUBLED HAPLOID LINES OF LOWLAND RICE. TJFC. 2021;26(2):218-25.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474