Research Article
BibTex RIS Cite

Year 2025, Volume: 30 Issue: 1, 235 - 248, 23.06.2025
https://doi.org/10.17557/tjfc.1519684

Abstract

References

  • Aebi, H., & Suter, H. (1971). Acatalasemia. Advances in human genetics, 2, 143-199.
  • Al-Karaki, G. N., & Williams, M. (2021). Mycorrhizal mixtures affect the growth, nutrition, and physiological responses of soybean to water deficit. Acta Physiologiae Plantarum, 43(5), 75. https://doi.org/10.1007/s11738-021-03250-0
  • Andrade, S. A., Gratão, P. L., Azevedo, R. A., Silveira, A. P., Schiavinato, M. A., & Mazzafera, P. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68(2), 198-207. https://doi.org/10.1016/j.envexpbot.2009.11.009
  • Arnon, D. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24 (1):1-15. https://doi.org/10.1104/pp.24.1.1
  • Ashwin, R., Bagyaraj, D. J., & Raju, B. M. (2022). Dual inoculation with rhizobia and arbuscular mycorrhizal fungus improves water stress tolerance and productivity in soybean. Plant Stress, 4, 100084. https://doi.org/10.1016/j.stress.2022.100084
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1): 3-42. https://doi.org/10.1007/s005720100097
  • Basak, H., Çimrin, K. M., Turan, M., Güneş, A., & Ozlu, E. (2019). Response of Mycorrhiza-Inoculated Pepper and Amino Acids to Salt Treatment at Different Ratios. Communications in Soil Science and Plant Analysis, 50(3), 350-361. https://doi.org/10.1080/00103624.2018.1563102
  • Basyal, B., & Walker, B. J. (2023). Arbuscular mycorrhizal fungi enhance yield and photosynthesis of switchgrass (Panicum virgatum L.) under extreme drought and alters the biomass composition of the host plant. Biomass and Bioenergy, 177, 106936. https://doi.org/10.1016/j.biombioe.2023.106936
  • Bates, L. S., Walderen, R. D. & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207. https://doi.org/10.1007/BF00018060
  • Bazgir, E., Hatami, N., Sedaghati, E., & Darvishnia, M. (2020). Isolation and study of morphology and phylogeny of arbuscular mycorrhizal fungi coexisting with the roots of some medicinal plants in Kerman province. Agricultural Biotechnology Journal, 12(1): 23-44. https://doi:10.22103/jab.2020.15110.1189
  • Bencherif, K., Dalpé, Y. & Sahraoui, A. L. H. (2019). Influence of native arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Tamarix shrubs under different salinity levels. In: Microorganisms in Saline Environments: Strategies and Functions (pp. 265-283). Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4
  • Bharti, A., Agnihotri, R., Maheshwari, H. S., Prakash, A., & Sharma, M. P. (2018). Bradyrhizobia-mediated drought tolerance in soybean and mechanisms involved. In silico approach for sustainable agriculture, 121-139. https://doi.org/10.1007/978-981- 13-0347-0_7
  • Boominathan, R. & Doran, P. M. (2002). Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist 156: 202-205. https://doi.org/10.1046/j.1469-8137.2002.00506.x
  • Carter, A. M., & Tegeder, M. (2016). Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Current Biology, 26(15), 2044-2051. http://dx.doi.org/10.1016/j.cub.2016.06.003
  • Dabré, É. E., Hijri, M., & Favret, C. (2022). Influence on soybean aphid by the tripartite interaction between soybean, a rhizobium bacterium, and an arbuscular mycorrhizal fungus. Microorganisms, 10(6), 1196. https://doi.org/10.3390/microorganisms10061196
  • Egamberdieva, D., Jabborova, D., & Berg, G. (2016). Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and soil, 405, 35-45. https://doi.org/10.1007/s11104-015-2661-8
  • Elabed, H., González-Tortuero, E., Ibacache-Quiroga, C., Bakhrouf, A., Johnston, P., Gaddour, K., & Rodríguez-Rojas, A. (2019). Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC microbiology 19(1): 142. https://doi.org/10.1186/s12866-019-1499-2
  • Fang, Y., & Xiong, L. (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72(4): 673-689. https://doi.org/10.1007/s00018-014-1767-0
  • Fazeli, F., Najafi Zarini., H., Arefrad, M., & Mirabadi, A. Z. (2015). Assessment of relation of morphological traits with seed yield and their diversity in M4 generation of soybean mutant lines (Glycine max (L.) Merrill) through factor analysis. Journal of Crop Breeding, 7: 15.47-56. (In Persian). doi:20.1001.1.22286128.1394.7.15.6.6
  • Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Garg, N., & Cheema, A. (2021). Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. Ecotoxicology and Environmental Safety, 207, 111196. https://doi.org/10.1016/j.ecoenv.2020.111196
  • Ghasemi, M., Zahedi, M., Gheysari, M., & Sabzalian, M. R. (2023). Effects of inoculation with four mycorrhizal species on seed phenolic and fatty acids of sesame plants grown under different irrigation regimes. Scientific Reports, 13(1), 16482. https://doi.org/10.1038/s41598-023-42375-9
  • Gholinezhad, E., Darvishzadeh, R., Moghaddam, S. S., & Popović-Djordjević, J. (2020). Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): The assessment of agrobiochemical traits and enzymatic antioxidant activity. Agricultural Water Management, 238, 106234. https://doi.org/10.1016/j.agwat.2020.106234
  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase: occurrence in higher plants. Plant Physiology, 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  • Gough, E. C., Owen, K. J., Zwart, R. S., & Thompson, J. P. (2021). Arbuscular mycorrhizal fungi acted synergistically with Bradyrhizobium sp. to improve nodulation, nitrogen fixation, plant growth and seed yield of mung bean (Vigna radiata) but increased the population density of the root-lesion nematode Pratylenchus thornei. Plant and Soil, 465(1-2), 431-452. https://doi.org/10.1007/s11104-021-05007-7
  • Grümberg, B. C., Urcelay, C., Shroeder, M. A., Vargas-Gil, S., & Luna, C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biology and Fertility of Soils, 51, 1-10. https://doi.org/10.1007/s00374-014-0942-7
  • Hasanuzzaman, M., Raihan, M. R. H., Nowroz, F., & Fujita, M. (2022). Insight into the mechanism of salt-induced oxidative stress tolerance in soybean by the application of Bacillus subtilis: Coordinated actions of osmoregulation, ion homeostasis, antioxidant defense, and methylglyoxal detoxification. Antioxidants, 11(10), 1856. https://doi.org/10.3390/antiox11101856
  • Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Wirth, S., & Egamberdieva, D. (2019). Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 26(1), 38-48. https://doi.org/10.1016/j.sjbs.2016.11.015
  • Ilker, E., Kocaturk, M., Kadıroglu, A., Altınbas, M., Yıldırım, A., Ozturk, G., & Yıldız, H. (2018). Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turkish Journal of Field Crops, 23(2), 80-84. https://doi.org/10.17557/tjfc.467434
  • Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  • Israilov, I., Sheraliev, K., Abdalova, G., Iminov, A., Allanov, K., Karimov, A., & Khaitov, B. (2023). Interactive effects of n fertilization and Bradirhizobia japanicum on agronomical traits of soybean in salt affected soils. Turkish Journal of Field Crops, 28(1), 15-25. https://doi.org/10.17557/tjfc.1189103
  • Jiménez, A., Sevilla, F., & Martí, M. C. (2021). Reactive oxygen species homeostasis and circadian rhythms in plants. Journal of Experimental Botany, 72(16), 5825-5840. https://doi.org/10.1093/jxb/erab318
  • Li, H.S. (2000). The principles and techniques of plant physiological and biochemical experiments. Beijing High. Educ. Press, 16:260–261.
  • Liu, J., Xie, X., Du, J., Sun, J., & Bai, X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Horticultural Science, 115: 190-195. https://doi.org/10.1016/j.scienta.2007.08.003
  • Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4), 1781-1787. https://doi.org/10.1104/pp.010497
  • Metcalf, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical chemistry, 38(3), 514–515. https://doi.org/10.1021/ac60235a044
  • Mohammadi, M., Modarres-Sanavy, S. A. M., Pirdashti, H., Zand, B. and Tahmasebi-Sarvestani, Z. (2019). Arbuscular mycorrhizae alleviate water deficit stress and improve antioxidant response, more than nitrogen fixing bacteria or chemical fertilizer in the evening primrose. Rhizosphere, 9: 76-89. https://doi.org/10.1016/j.rhisph.2018.11.008
  • Mondani, F., Khani, K., Honarmand, S. J., and Saeidi, M. (2019). Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) underwater deficit stress condition. Agricultural Water Management, 213, 707-713. https://doi.org/10.1016/j.agwat.2018.11.004
  • Musyoka, D. M., Njeru, E. M., Nyamwange, M. M. E., & Maingi, J. M. (2020). Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. Journal of Plant Nutrition, 43(7), 1036-1047. https://doi.org/10.1080/01904167.2020.1711940
  • Nath, M., Bhatt, D., Prasad, R., Gill, S. S., Anjum, N. A., & Tuteja, N. (2016). Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Frontiers in Plant Science, 7, 1574. https://doi.org/10.3389/fpls.2016.01574
  • Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12(1), 9044. https://doi.org/10.1038/s41598-022-13059-7
  • Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology 174: 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
  • Pathania, P., Rajta, A., Singh, P. C., & Bhatia, R. (2020). Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 30, 101842. https://doi.org/10.1016/j.bcab.2020.101842
  • Plewa, M. J., Smith, S. R., & Wagner, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 247(1), 57-64. https://doi.org/10.1016/0027-5107(91)90033-K
  • Rahimzadeh, S., & Pirzad, A. (2019). Pseudomonas and mycorrhizal fungi co-inoculation alter seed quality of flax under various water supply conditions. Industrial crops and products, 129, 518-524. https://doi.org/10.1016/j.indcrop.2018.12.038
  • Ran, Q. X., Pang, J., Dong, R., & He, J. (2024). Enhanced seed yield, essential amino acids and unsaturated fatty acids in soybean seeds with phosphorus fertilizer supply. Journal of Food Composition and Analysis, 125, 105813. https://doi.org/10.1016/j.jfca.2023.105813
  • Sairam, R. K., Deshmukh, P. S., & Saxena, D. C. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia plantarum, 41, 387-394. https://doi.org/10.1023/A:1001898310321
  • Salloum, M. S., Menduni, M. F., & Luna, C. M. (2018). A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Botany, 96(2), 135-144. https://doi.org/10.1139/cjb-2017-0137
  • Samsami, N., Nakhzari Moghaddam, A., Rahemi Karizaki, A., & Gholinezhad, E. (2019). Effect of mycorrhizal fungi and rhizobium bacterial on qualitative and quantitative traits of soybean in response to drought stress. Journal of Crops Improvement, 21(1), 13-26. https://doi.org/10.22059/jci.2019.262185.2066
  • Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., & Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, 100520. https://doi.org/10.1016/j.gfs.2021.100520
  • Serraj, R. & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25(2): 333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  • Tohidi Moghadam, H.R., Zahedi, H., & Ghooshchi, F. (2011). Oil quality of canola cultivars in response to water stress and super absorbent polymer application. Pesquisa Agropecuária Tropical, 41, 579-586. https://doi.org/10.5216/pat.v41i4.13366
  • Torun, H. & Toprak, B. (2020). Arbuscular mycorrhizal fungi and K-humate combined as biostimulants: Changes in antioxidant defense system and radical scavenging capacity in Elaeagnus angustifolia. Journal of Soil Science and Plant Nutrition, 20(4), 2379-2393. https://doi.org/10.1007/s42729-020-00304-z
  • Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10(9), 1147-1158. https://doi.org/10.1016/j.molp.2017.07.012
  • Zardak, S. G., Dehnavi, M. M., Salehi, A., & Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere, 6, 31-38. https://doi.org/10.1016/j.rhisph.2018.02.001

Co-Inoculation of Bradyrhizobium and Arbuscular Mycorrhizal Fungus Alleviates the Effects of Drought Stress in Soybean (Glycine max L.)

Year 2025, Volume: 30 Issue: 1, 235 - 248, 23.06.2025
https://doi.org/10.17557/tjfc.1519684

Abstract

Legumes are sensitive to drought stress, which adversely affects their
seed yield, protein and oil content. This was investigated in a two-year
field experiment conducted using a split-plot design with three
replications in the Mughan plain, Ardabil. The experimental factors
included drought stress as the main plot at three levels (60, 100, and 140
mm of evaporation from a class A pan) and the co-inoculation of soybean
symbiotic bacteria and arbuscular mycorrhizal fungus species across
eight treatments (Bradyrhizobium japonicum, Funneliformis mosseae,
Rhizophagus irregularis, Glomus fasciculatum, B. japonicum + F.
mosseae, B. japonicum + R. irregularis, B. japonicum + G. fasciculatum,
and control) as the subplot. The results revealed that heightened drought
stress led to a reduction in plant dry weight, pod number, seed number
per plant, and seed yield in all treatments in both study years. However,
this reduction was less pronounced in some treatments, especially those
involving co-inoculation with B. japonicum + R. irregularis and B.
japonicum + G. fasciculatum. Conversely, all treatments exhibited an
increase in stomatal resistance, chlorophyll a concentration, soluble
sugars, malondialdehyde (MDA), peroxidase (POD), and superoxide
dismutase (SOD) under drought conditions (100 and 140 mm) compared
to the normal irrigation conditions (I60). The saturated fatty acids
(palmitic and stearic acids) declined in inoculated plants compared to the
control, while the trend was the opposite for unsaturated fatty acids
(linoleic, linoneic, and oleic acids). Drought stress increased palmitic acid
content by up to 32.4% and reduced linolenic acid content by up to 13.4%.
Among the treatments, co-inoculation with B. japonicum + R. irregularis
and B. japonicum + G. fasciculatum demonstrated a more significant
improvement in the soybean’s drought tolerance compared to the others.
Given these results, inoculating soybean plants with rhizobial bacteria
and R. irregularis mycorrhizae can be recommended as a strategy to
enhance their drought resistance and improve their seed yield and oil
quality.

References

  • Aebi, H., & Suter, H. (1971). Acatalasemia. Advances in human genetics, 2, 143-199.
  • Al-Karaki, G. N., & Williams, M. (2021). Mycorrhizal mixtures affect the growth, nutrition, and physiological responses of soybean to water deficit. Acta Physiologiae Plantarum, 43(5), 75. https://doi.org/10.1007/s11738-021-03250-0
  • Andrade, S. A., Gratão, P. L., Azevedo, R. A., Silveira, A. P., Schiavinato, M. A., & Mazzafera, P. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68(2), 198-207. https://doi.org/10.1016/j.envexpbot.2009.11.009
  • Arnon, D. (1949). Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24 (1):1-15. https://doi.org/10.1104/pp.24.1.1
  • Ashwin, R., Bagyaraj, D. J., & Raju, B. M. (2022). Dual inoculation with rhizobia and arbuscular mycorrhizal fungus improves water stress tolerance and productivity in soybean. Plant Stress, 4, 100084. https://doi.org/10.1016/j.stress.2022.100084
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1): 3-42. https://doi.org/10.1007/s005720100097
  • Basak, H., Çimrin, K. M., Turan, M., Güneş, A., & Ozlu, E. (2019). Response of Mycorrhiza-Inoculated Pepper and Amino Acids to Salt Treatment at Different Ratios. Communications in Soil Science and Plant Analysis, 50(3), 350-361. https://doi.org/10.1080/00103624.2018.1563102
  • Basyal, B., & Walker, B. J. (2023). Arbuscular mycorrhizal fungi enhance yield and photosynthesis of switchgrass (Panicum virgatum L.) under extreme drought and alters the biomass composition of the host plant. Biomass and Bioenergy, 177, 106936. https://doi.org/10.1016/j.biombioe.2023.106936
  • Bates, L. S., Walderen, R. D. & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207. https://doi.org/10.1007/BF00018060
  • Bazgir, E., Hatami, N., Sedaghati, E., & Darvishnia, M. (2020). Isolation and study of morphology and phylogeny of arbuscular mycorrhizal fungi coexisting with the roots of some medicinal plants in Kerman province. Agricultural Biotechnology Journal, 12(1): 23-44. https://doi:10.22103/jab.2020.15110.1189
  • Bencherif, K., Dalpé, Y. & Sahraoui, A. L. H. (2019). Influence of native arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Tamarix shrubs under different salinity levels. In: Microorganisms in Saline Environments: Strategies and Functions (pp. 265-283). Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4
  • Bharti, A., Agnihotri, R., Maheshwari, H. S., Prakash, A., & Sharma, M. P. (2018). Bradyrhizobia-mediated drought tolerance in soybean and mechanisms involved. In silico approach for sustainable agriculture, 121-139. https://doi.org/10.1007/978-981- 13-0347-0_7
  • Boominathan, R. & Doran, P. M. (2002). Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist 156: 202-205. https://doi.org/10.1046/j.1469-8137.2002.00506.x
  • Carter, A. M., & Tegeder, M. (2016). Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Current Biology, 26(15), 2044-2051. http://dx.doi.org/10.1016/j.cub.2016.06.003
  • Dabré, É. E., Hijri, M., & Favret, C. (2022). Influence on soybean aphid by the tripartite interaction between soybean, a rhizobium bacterium, and an arbuscular mycorrhizal fungus. Microorganisms, 10(6), 1196. https://doi.org/10.3390/microorganisms10061196
  • Egamberdieva, D., Jabborova, D., & Berg, G. (2016). Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and soil, 405, 35-45. https://doi.org/10.1007/s11104-015-2661-8
  • Elabed, H., González-Tortuero, E., Ibacache-Quiroga, C., Bakhrouf, A., Johnston, P., Gaddour, K., & Rodríguez-Rojas, A. (2019). Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC microbiology 19(1): 142. https://doi.org/10.1186/s12866-019-1499-2
  • Fang, Y., & Xiong, L. (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72(4): 673-689. https://doi.org/10.1007/s00018-014-1767-0
  • Fazeli, F., Najafi Zarini., H., Arefrad, M., & Mirabadi, A. Z. (2015). Assessment of relation of morphological traits with seed yield and their diversity in M4 generation of soybean mutant lines (Glycine max (L.) Merrill) through factor analysis. Journal of Crop Breeding, 7: 15.47-56. (In Persian). doi:20.1001.1.22286128.1394.7.15.6.6
  • Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Garg, N., & Cheema, A. (2021). Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. Ecotoxicology and Environmental Safety, 207, 111196. https://doi.org/10.1016/j.ecoenv.2020.111196
  • Ghasemi, M., Zahedi, M., Gheysari, M., & Sabzalian, M. R. (2023). Effects of inoculation with four mycorrhizal species on seed phenolic and fatty acids of sesame plants grown under different irrigation regimes. Scientific Reports, 13(1), 16482. https://doi.org/10.1038/s41598-023-42375-9
  • Gholinezhad, E., Darvishzadeh, R., Moghaddam, S. S., & Popović-Djordjević, J. (2020). Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): The assessment of agrobiochemical traits and enzymatic antioxidant activity. Agricultural Water Management, 238, 106234. https://doi.org/10.1016/j.agwat.2020.106234
  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase: occurrence in higher plants. Plant Physiology, 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  • Gough, E. C., Owen, K. J., Zwart, R. S., & Thompson, J. P. (2021). Arbuscular mycorrhizal fungi acted synergistically with Bradyrhizobium sp. to improve nodulation, nitrogen fixation, plant growth and seed yield of mung bean (Vigna radiata) but increased the population density of the root-lesion nematode Pratylenchus thornei. Plant and Soil, 465(1-2), 431-452. https://doi.org/10.1007/s11104-021-05007-7
  • Grümberg, B. C., Urcelay, C., Shroeder, M. A., Vargas-Gil, S., & Luna, C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biology and Fertility of Soils, 51, 1-10. https://doi.org/10.1007/s00374-014-0942-7
  • Hasanuzzaman, M., Raihan, M. R. H., Nowroz, F., & Fujita, M. (2022). Insight into the mechanism of salt-induced oxidative stress tolerance in soybean by the application of Bacillus subtilis: Coordinated actions of osmoregulation, ion homeostasis, antioxidant defense, and methylglyoxal detoxification. Antioxidants, 11(10), 1856. https://doi.org/10.3390/antiox11101856
  • Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Wirth, S., & Egamberdieva, D. (2019). Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 26(1), 38-48. https://doi.org/10.1016/j.sjbs.2016.11.015
  • Ilker, E., Kocaturk, M., Kadıroglu, A., Altınbas, M., Yıldırım, A., Ozturk, G., & Yıldız, H. (2018). Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turkish Journal of Field Crops, 23(2), 80-84. https://doi.org/10.17557/tjfc.467434
  • Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84(1), 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  • Israilov, I., Sheraliev, K., Abdalova, G., Iminov, A., Allanov, K., Karimov, A., & Khaitov, B. (2023). Interactive effects of n fertilization and Bradirhizobia japanicum on agronomical traits of soybean in salt affected soils. Turkish Journal of Field Crops, 28(1), 15-25. https://doi.org/10.17557/tjfc.1189103
  • Jiménez, A., Sevilla, F., & Martí, M. C. (2021). Reactive oxygen species homeostasis and circadian rhythms in plants. Journal of Experimental Botany, 72(16), 5825-5840. https://doi.org/10.1093/jxb/erab318
  • Li, H.S. (2000). The principles and techniques of plant physiological and biochemical experiments. Beijing High. Educ. Press, 16:260–261.
  • Liu, J., Xie, X., Du, J., Sun, J., & Bai, X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Horticultural Science, 115: 190-195. https://doi.org/10.1016/j.scienta.2007.08.003
  • Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4), 1781-1787. https://doi.org/10.1104/pp.010497
  • Metcalf, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical chemistry, 38(3), 514–515. https://doi.org/10.1021/ac60235a044
  • Mohammadi, M., Modarres-Sanavy, S. A. M., Pirdashti, H., Zand, B. and Tahmasebi-Sarvestani, Z. (2019). Arbuscular mycorrhizae alleviate water deficit stress and improve antioxidant response, more than nitrogen fixing bacteria or chemical fertilizer in the evening primrose. Rhizosphere, 9: 76-89. https://doi.org/10.1016/j.rhisph.2018.11.008
  • Mondani, F., Khani, K., Honarmand, S. J., and Saeidi, M. (2019). Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) underwater deficit stress condition. Agricultural Water Management, 213, 707-713. https://doi.org/10.1016/j.agwat.2018.11.004
  • Musyoka, D. M., Njeru, E. M., Nyamwange, M. M. E., & Maingi, J. M. (2020). Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. Journal of Plant Nutrition, 43(7), 1036-1047. https://doi.org/10.1080/01904167.2020.1711940
  • Nath, M., Bhatt, D., Prasad, R., Gill, S. S., Anjum, N. A., & Tuteja, N. (2016). Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Frontiers in Plant Science, 7, 1574. https://doi.org/10.3389/fpls.2016.01574
  • Oliveira, T. C., Cabral, J. S. R., Santana, L. R., Tavares, G. G., Santos, L. D. S., Paim, T. P., & Mendes, G. C. (2022). The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Scientific Reports, 12(1), 9044. https://doi.org/10.1038/s41598-022-13059-7
  • Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology 174: 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
  • Pathania, P., Rajta, A., Singh, P. C., & Bhatia, R. (2020). Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 30, 101842. https://doi.org/10.1016/j.bcab.2020.101842
  • Plewa, M. J., Smith, S. R., & Wagner, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 247(1), 57-64. https://doi.org/10.1016/0027-5107(91)90033-K
  • Rahimzadeh, S., & Pirzad, A. (2019). Pseudomonas and mycorrhizal fungi co-inoculation alter seed quality of flax under various water supply conditions. Industrial crops and products, 129, 518-524. https://doi.org/10.1016/j.indcrop.2018.12.038
  • Ran, Q. X., Pang, J., Dong, R., & He, J. (2024). Enhanced seed yield, essential amino acids and unsaturated fatty acids in soybean seeds with phosphorus fertilizer supply. Journal of Food Composition and Analysis, 125, 105813. https://doi.org/10.1016/j.jfca.2023.105813
  • Sairam, R. K., Deshmukh, P. S., & Saxena, D. C. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia plantarum, 41, 387-394. https://doi.org/10.1023/A:1001898310321
  • Salloum, M. S., Menduni, M. F., & Luna, C. M. (2018). A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Botany, 96(2), 135-144. https://doi.org/10.1139/cjb-2017-0137
  • Samsami, N., Nakhzari Moghaddam, A., Rahemi Karizaki, A., & Gholinezhad, E. (2019). Effect of mycorrhizal fungi and rhizobium bacterial on qualitative and quantitative traits of soybean in response to drought stress. Journal of Crops Improvement, 21(1), 13-26. https://doi.org/10.22059/jci.2019.262185.2066
  • Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., & Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, 100520. https://doi.org/10.1016/j.gfs.2021.100520
  • Serraj, R. & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25(2): 333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  • Tohidi Moghadam, H.R., Zahedi, H., & Ghooshchi, F. (2011). Oil quality of canola cultivars in response to water stress and super absorbent polymer application. Pesquisa Agropecuária Tropical, 41, 579-586. https://doi.org/10.5216/pat.v41i4.13366
  • Torun, H. & Toprak, B. (2020). Arbuscular mycorrhizal fungi and K-humate combined as biostimulants: Changes in antioxidant defense system and radical scavenging capacity in Elaeagnus angustifolia. Journal of Soil Science and Plant Nutrition, 20(4), 2379-2393. https://doi.org/10.1007/s42729-020-00304-z
  • Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10(9), 1147-1158. https://doi.org/10.1016/j.molp.2017.07.012
  • Zardak, S. G., Dehnavi, M. M., Salehi, A., & Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere, 6, 31-38. https://doi.org/10.1016/j.rhisph.2018.02.001
There are 55 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Research Article
Authors

Mohammad Ali Zirak- Qoturbulagh This is me 0009-0009-3062-9620

Shahram Mehri This is me 0000-0002-4109-642X

Hossein Soleimanzadeh This is me 0000-0003-1246-6484

Mohammad Hossein Ansari 0000-0002-2186-4946

Submission Date July 21, 2024
Acceptance Date April 18, 2025
Publication Date June 23, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Zirak- Qoturbulagh, M. A., Mehri, S., Soleimanzadeh, H., Ansari, M. H. (2025). Co-Inoculation of Bradyrhizobium and Arbuscular Mycorrhizal Fungus Alleviates the Effects of Drought Stress in Soybean (Glycine max L.). Turkish Journal Of Field Crops, 30(1), 235-248. https://doi.org/10.17557/tjfc.1519684

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture, Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org