Research Article
BibTex RIS Cite

Year 2025, Volume: 30 Issue: 2, 266 - 281, 28.12.2025
https://doi.org/10.17557/tjfc.1620432

Abstract

References

  • Ambrósio, M., Daher, R.F., Santos, R.M., Santana, J.G.S., Vidal, A.K.F., Nascimento, M.R., Leite, C.L., de Souza, A.G., Freitas, R.F., Stida, W.F., Farias, J.E.C., Filho, B.F.D., Melo, L.C., & dos Santos, P.R. (2024). Multi-trait index: selection and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology. 24: 525. https://doi.org/10.1186/s12870-024-05248-5
  • Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection, Paper No. 174. FAO, Rome. https://www.researchgate.net/publication/285754548
  • Aruna, K., Kumar, B.M.D., Sridhara, S., Soujanya, B. A, Kumar K L, N., Moussa, I.M., Elansary, O.H., & Olivoto, T. (2024). Multi-trait stability index for identification of stable green gram (Vigna radiata (L.) Wilczek) genotypes with MYMV resistance. Heliyon. 10. https://doi.org/10.1016/j.heliyon.2024.e32763
  • Bangladesh Meteorological Department (BMD). (2019). Climate data. https://dataportal.bmd.gov.bd Bangladesh Rice Research Institute (BRRI). (2023). http://www.brri.gov.bd
  • Banjare, A.K., Verma, R., Shrivastava, R., Gupta, V., Meshram, P., John, S., Khute, I.K., Tiwari, A.K., & Rohit (2023). Association study and direct-indirect effects of characters for yield in rice (Oryza sativa L.). International Journal of Environment and Climate Change. 13. https://doi.org/10.9734/ijecc/2023/v13i92219
  • Chen, J., Cao, F., Liu, Y., Tao, Z., Lei, T., Abou-Elwafa, S.F., & Huang, M. (2022). Comparison of short-duration and longduration rice cultivars cultivated in various planting densities. Agronomy. 12(1739). https://doi.org/10.3390/agronomy12081739
  • Chen, K., Łyskowski, Ł., Jaremko, Ł., & Jaremko, M. (2021). Genetic and molecular factors determining grain weight in rice. Frontier Plant Science. 12. https://doi.org/10.3389/fpls.2021.605799
  • Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy. 44: 55–85. https://doi.org/10.1016/S0065- 2113(08)60818-4
  • Dyulgerova, B., & Dyulgerov, N. (2024). Genotype-by-year interaction and simultaneous selection for grain yield and stability in winter barley. Bulgarian Journal of Agricultural Science. 30(3): 466–475.
  • Eberhart, S.A., & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science. 6(1): 36–40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x
  • El-Aty, M.S., Abo-Youssef, M.I., Sorour, F.A., Salem, M., Gomma, M.A., Ibrahim, O.M., Yaghoubi Khanghahi, M., ALQAHTANI, W.H., Abdel‐Maksoud, M.A., & El-Tahan, A.M. (2024). Performance and stability for grain yield and its components of some rice cultivars under various environments. Agronomy. 14(2137). https://doi.org/10.3390/agronomy14092137
  • Gauch, H.G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science. 46: 1488–1500. https://doi.org/10.2135/CROPSCI2005.07-0193
  • Gauch, H.G., H. Piepho., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science. 48: 866–889. https://doi.org/10.2135/cropsci2007.09.0513
  • Ghazy, M.I., Abdelrahman, M., EL-Agoury, R.Y., El-Hefnawy, T.M., El-Naem, S.A., Daher, E.M., & Rehan. M. (2023). Exploring genetics by environment interactions in some rice genotypes across varied environmental conditions. Plants. 13. https://doi.org/10.3390/plants13010074
  • Ghulam Hussain, S. (2012). Chapter 5. Role of rice in food security of Bangladesh. In: Food Security: Quality Management, Issues and Economic Implications. Nova Publishers, Hauppauge. pp. 127–148.
  • Giri, A., Saxena, R.R., Sahoo, B., Saha, S., Rawte, S., Saxena, R.R., Verma, S.K., Porte, S.S., & Verulkar, S.B. (2021). Correlation and path analysis for yield and attributing traits in rice (Oryza sativa L.). The Pharma Innovation Journal. 10(10): 1409–1412.
  • Hasan-Ud-Daula., & Sarker, U. (2020). Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika. 52(2): 711–726. https://doi.org/10.2298/GENSR2002711H
  • Herawati, R., Lestari, A.P., Ganefianti. D.W., & Romeida, A. (2021). Comparative study on the stability and adaptability of different models to develop a high-yield inbred line from landrace rice varieties. Annals of Agricultural Sciences. https://doi.org/10.1016/j.aoas.2021.12.004
  • Hongyu, K., M. García-Peña, L.B. Araújo., & Santos Dias, C.T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters. 51: 102–89. https://doi.org/10.2478/bile-2014-0007
  • Huang, X., Jang, S., Kim, B., Piao, Z., Redona. E., & Koh, H.J. (2021). Evaluating genotype × environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical, and tropical environments. Agriculture (Switzerland). 11(6). https://doi.org/10.3390/agriculture11060558
  • Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., & Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics. 42(11): 961–967. https://doi.org/10.1038/ng.695
  • International Rice Research Institute (IRRI). (2018). Transforming rice-based agri-food systems in Asia. https://www.irri.org/
  • Jing, Q., Spiertz, J.H., Hengsdijk, H., Van Keulen, H., Cao, W., & Dai, T. (2010). Adaptation and performance of rice genotypes in tropical and subtropical environments. NJAS - Wageningen Journal of Life Science. 57: 149–157. https://doi.org/10.1016/j.njas.2010.04.002
  • Justo, S.B., H.G. Mkamilo, N.O. Danga, R. Bakari, F. Suleiman, R.A. Mwakapala, M.A. Batare, V.B. Bulegeya, S.S. Kashenge, W.T. Suvi, S. Lee, K. Txd, T. Komboka, I. Txd, &Tari. (2024). Genotype and genotype × environment interaction effects on the rice grain yield performance in different agro-ecologies in Tanzania. Journal of Plant Breeding and Crop Science. 16(2): 36–45. https://doi.org/10.5897/JPBCS2024.1038
  • Kanfany, G., M.A. Ayenan, Y.A. Zoclanclounon, T. Kane, M. Ndiaye, C. Diatta, J.P. Diatta, T. Gueye., & Fofana, A.T. (2021). Analysis of genotype-environment interaction and yield stability of introduced upland rice in the Groundnut Basin agroclimatic zone of Senegal. Advances in Agriculture. https://doi.org/10.1155/2021/4156167
  • Kawano, K., & Tanaka, A. (1968). Growth duration in relation to yield and nitrogen response in the rice plant. Japanese Journal of Breeding. 18: 46–52. https://doi.org/10.1270/JSBBS1951.18.46
  • Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology. 59: 1–6. https://doi.org/10.1007/s11103-005-2159-5
  • Kumar, B.M., A. Purushottam, P. Raghavendra, T. Vittal, K.N. Shubha., & Madhuri, R.D. (2020). Genotype × environment interaction and stability for yield and its components in advanced breeding lines of red rice (Oryza sativa L.). Bangladesh Journal of Botany. 49(3). https://doi.org/10.3329/bjb.v49i3.49328
  • Lata, S., Guleria, S.K., Dev, J., Katna, G., Sood, B.C., Kalia, V.K., & Singh, A. (2010). Stability analysis in maize (Zea mays L.) hybrids across locations. Electronics Journal of Plant Breeding. 1: 239–243.
  • Lee, S.Y., Lee, H., Lee, C., Ha, S., Park, H., Lee, S., Kwon, Y., Jeung, J., & Mo, Y. (2023). Multi-environment trials and stability analysis for yield-related traits of commercial rice cultivars. Agriculture. https://doi.org/10.3390/agriculture13020256
  • Li, Z., Pinson, S.R., Stansel, J.W., & Paterson, A.H. (1998). Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol. Breed. 4: 419–426. https://doi.org/10.1023/A:1009608128785
  • Liu, K., Zhang, K., Zhang, Y., Cui, J., Li, Z., Huang, J., Li, S., Zhang, J., Deng, S., Zhang, Y., Huang, J., Ren, L., Chu, Y., Zhao, H., & Chen, H. (2024). Optimizing the Total Spikelets Increased Grain Yield in Rice. Agronomy, 14(1), 152. https://doi.org/10.3390/agronomy14010152
  • Lobell, D.B., Cassman, K.G., & Field, C.B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environmental Resource. 34: 179–204. https://doi.org/10.1146/annurev.environ.041008.093740
  • Lu, Y., Chuan, M., Wang, H., Chen, R., Tao, T., Zhou, Y., Xu, Y., Li, P., Yao, Y., Xu, C., & Yang, Z. (2022). Genetic and molecular factors in determining grain number per panicle of rice. Frontier Plant Science. 13: 964246. https://doi.org/10.3389/fpls.2022.964246
  • Maclean, J.L., Dawe, D.C., Hardy, B., & Hettel, G.P. (2013). Rice almanac: Source book for one of the most important economic activities on earth. International Rice Research Institute. https://books.irri.org/9789712203008_content.pdf
  • Malosetti, M., Ribaut, J.M., & Van Eeuwijk, F.A., (2013). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology. 4(MAR): 1–17. https://doi.org/10.3389/fphys.2013.00044
  • Mohammadi, R., & Amri, A. (2012). Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica. 192: 227–249. https://doi.org/10.1007/s10681-012-0839-1
  • Mohammadi, R., Jafarzadeh, J., Poursiahbidi, M.M., Hatamzadeh, H., & Amri, A. (2023). Genotype-by-environment interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental covariates. Agricultural Research. 12: 364–374. https://doi.org/10.1007/s40003-023-00661-y
  • Moumeni, A., Mohaddesi, A., Amo-oughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi,V. (2018). Stability analysis and genotype × environment interaction for grain yield of rice (Oryza sativa L.) promising breeding lines. Iranian Journal of Crop Science. 20: 329–344.
  • Nafisah, Z., Satoto, J., Jamil, A., & Sasmita, P. (2020). Genotype by environment interaction for grain yield of salt tolerance rice genotypes in coastal saline area. Penelitian Pertanian Tanaman Pangan Journal. 4(1): 9–16. https://dx.doi.org/10.21082/jpptp.v4n1.2020.p9-16
  • Nataraj, V., Bhartiya, A., Singh, C.P., Devi, H.N., Deshmukh, M.P., Verghese, P., Singh, K., Mehtre, S.P., Kumari, V., Maranna, S., Kumawat, G., Ratnaparkhe, M.B., Satpute, G.K., Rajesh, V., Chandra, S., Ramteke, R., Khandekar, N., & Gupta, S. (2021). WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agronomy Journal. https://doi.org/10.1002/agj2.20750
  • Nishad, A., Mishra, A.N., Chaudhari, R., Aryan, R.K., & Katiyar, P. (2018). Effect of temperature on growth and yield of rice (Oryza sativa L.) cultivars. International Journal of Chemical Studies. 6(5): 1381–1383. https://www.researchgate.net/publication/330440940
  • Olivoto, T., & Lúcio, A.D.C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution. 11(6): 783–789. https://doi.org/10.1111/2041-210X.13384
  • Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q., & Jost, E. (2019). Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal. 111(6): 2949–2960. https://doi.org/10.2134/agronj2019.03.0220
  • Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G., & Diel, M.I. (2019). Mean performance and stability in multienvironment trials II: Selection based on multiple traits. Agronomy Journal. 111(6): 2961–2969. https://doi.org/10.2134/agronj2019.03.0221
  • Pallavi, M., Shanthi, P., Reddy, V.L., Kumar, A.N., & Maruthi, P. B. (2024). Selection index for enhanced yield in rice genotypes. Oryza-An International Journal of Rice. https://doi.org/10.35709/ory.2024.61.2.10
  • Parida, A.K., Sekhar, S., Panda, B.B., Sahu, G., & Shaw, B.P. (2022). Effect of panicle morphology on grain filling and rice yield: Genetic control and molecular regulation. Frontier Genetics. 13: 876198. https://doi.org/10.3389/fgene.2022.876198
  • Poli, Y., Balakrishnan, D., Desiraju, S., Panigrahy, M., Voleti, S.R., Mangrauthia, S.K., & Neelamraju, S. (2018). Genotype × environment interactions of Nagina22 rice mutants for yield traits under low phosphorus, water-limited, and normal irrigated conditions. Scientific Reports. 8: 33812. https://doi.org/10.1038/s41598-018-33812-1
  • Ponsiva, S.T., Senthilkumar, N., Vanitha, J., Anandan, A., Satheeskumar, K., Mahendran, R., & Thirugnanakumar, S. (2024). Detection of superior rice genotypes and yield stability using AMMI and MTSI models. Electronic Journal of Plant Breeding. 15(2). https://doi.org/10.37992/2024.1502.057
  • Pradhan, P., Das, B., Kumar, D., Phani, V., & Kundu, S. (2024). Deciphering rice genotypes under submergence stress and optimum condition for yield stability analysis. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.70005
  • Prakash, S., Srivastava, K.K., & Yadav, R.R. (2019). Character association and path analysis of yield-contributing traits and quality parameters in rice (Oryza sativa L.). International Journal of Chemical Studies. 7: 1264–1268.
  • Rabbi, S.M.H., Biswas, P., Rashid, E.S.M., Iftekharuddaula, K.M., Rahman, N.M.F., Rahman, M.S., Sarkar, M.A.R., Mamun, M.A.A., Salam, M.U., & Kabir, M.S. (2021). Increasing rice yield through targeting genetic potentials by rice types. Bangladesh Rice Journal. 24(2): 67–82. https://doi.org/10.3329/brj.v24i2.53449
  • Rang, Z., Jagadish, S.V., Zhou, Q., Craufurd, P., & Heuer, S. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany. 70: 58–65. https://doi.org/10.1016/j.envexpbot.2010.08.009
  • Rani, G.B., Ahmed, L., Rani, A., & Rao, S. (2018). Breeding strategies for lodging resistance in rice. International Journal of Bio-resources and Stress Management. 8(6): 895–903. https://doi.org/10.23910/IJBSM/2017.8.6.1793a
  • Sadimantara, G.R., Muhidin, & Nuraida, W.O. (2023). Evaluation of yield attributing characters and grain yield in some promising red rice lines (Oryza sativa L.) grown in the lowland conditions. IOP Conference Series Earth and Environmental Science. 1241. https://doi.org/10.1088/1755-1315/1241/1/012038
  • Sampaio Filho, J.S., Olivoto, T., Campos, M.D., & de Oliveira, E.J. (2023). Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Frontier Plant Science. 14. https://doi.org/10.3389/fpls.2023.1282221
  • Saran, D., Gauraha, D., Sao, A., Sandilya, V.K., & Kumar, R. (2023). Correlation and path coefficient analysis for yield and yield-attributing traits in rice (Oryza sativa L.). International Journal of Plant & Soil Science. 35(18): 94–101. https://doi.org/10.9734/ijpss/2023/v35i183271
  • Sasaki, K., Fujita, D., Koide, Y., Lumanglas, P.D., Gannaban, R.B., Tagle, A.G., Obara, M., Fukuta, Y., Kobayashi, N., & Ishimaru, T. (2017). Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant-type rice and evaluation of a near-isogenic line for grain productivity. Journal of Experimental Botany. 68(11): 2693–2702. https://doi.org/10.1093/jxb/erx128
  • Saud, S., Wang, D., Fahad, S., Alharby, H.F., Bamagoos, A.A., Mjrashi, A., Alabdallah, N.M., Alzahrani, S.S., AbdElgawad, H., Adnan, M., Sayyed, R.Z., Ali, S., & Hassan, S. (2022). Comprehensive impacts of climate change on rice production and adaptive strategies in China. Frontier Microbiology. 13. https://doi.org/10.3389/fmicb.2022.926059
  • Shahidullah, S.M., Hanafi, M.M., Ashrafuzzaman, M., Uddin, M.K., & Razi-Ismail, M. (2010). Analysis of grain density and yield characters in aromatic rice genotypes. Agrociencia. 44: 325-337.
  • Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi. A. (2020). Stability of some rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics and Plant Breeding. 9(2): 1-11. https://doi.org/10.30479/ijgpb.2021.14432.1283
  • Sheehy, J. E., Dionora, M. J. A., & Mitchell, P. L. (2001). Spikelet numbers, sink size and potential yield in rice. Field Crops Research, 71(2), 77–85. https://doi.org/10.1016/S0378-4290(01)00145-9
  • Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot, and MTSI. Scientific Reports. 13: 10019. https://doi.org/10.1038/s41598- 023-37217-7
  • Tiwari, D.N., Pandey, M.P., Manandhar, H.K., & Bhusal, T.N. (2024). Genotype by Environment Interaction Using AMMI, GGE Biplot and Multivariate Analysis of Nepalese Aromatic Rice Landraces. Agronomy Journal of Nepal. 8(1): 34-51. https://doi.org/10.3126/ajn.v8i1.70767
  • Tiwari, V., Saxena, R.R., Singh, D., & Gupta, S. (2018). Genotype and environment interaction analysis by AMMI model and GGE bi plot. Journal of Pharmcognosy and Phytochemistry. 7(4): 887-891.
  • Unnati, P., Pathik, P., Lalit, M., &. Bilwal, B.B. (2017). Stability analysis for grain yield and its attributing traits of rice across locations. International Journal of Current Microbiology and Applied Science. 6: 2102-2111. https://doi.org/10.20546/IJCMAS.2017.611.248
  • Vergara, B.S., Tanaka, A., Lilis, R., & Puranabhavung, S. 1966. Relationship between growth duration and grain yield of rice plants. Soil Science and Plant Nutrition. 12: 31-39. https://doi.org/10.1080/00380768.1966.10431180
  • Wang, Y., He, W., Yan, C., Gao, H., Cui, J., & Liu, Q. (2024). Environmental impact of various rice cultivation methods in Northeast China through life cycle assessment. Agronomy. 14(2): 267. https://doi.org/10.3390/agronomy14020267
  • Wang, Y., Wang, X., Zhai, L., Zafar, S., Shen, C., Zhu, S., Chen, K., & Xu. J. (2023). A novel effective panicle number per plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. The Crop Journal. https://doi.org/10.1016/j.cj.2023.11.003
  • Yan, W., & Kang. M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.). CRC Press. https://doi.org/10.1201/9781420040371
  • Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science. 47(2): 643–655. https://doi.org/10.2135/cropsci2006.06.0374
  • Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., Ito, A., Koketsu, E., Kawamura, M., Kotake, K., Yoshida, S., Endo, M., Tamiya, G., Kitano, H., Ueguchi-Tanaka, M., Hirano, K., & Matsuoka. M. (2019). GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proceedings of the National Academy of Sciences. USA 116: 21262-21267. https://doi.org/10.1073/pnas.1904964116
  • Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection for mean performance and stability of maize hybrids in mega-environments delineated using enviro-typing techniques. Frontier Plant Science. 13. https://doi.org/10.3389/fpls.2022.1030521
  • Zuffo, A.M., Steiner, F., Aguilera, J.G., Teodoro, P.E., Teodoro, L.P.R., & Busch, A. (2020). Multi-trait stability index: A tool for simultaneous selection of soybean genotypes in drought and saline stress. Journal of Agronomy and Crop Science. 206(6): 815–822. https://doi.org/10.1111/jac.12409

Identification of Stable Rice Genotypes Using WAASB and MTSI Indices

Year 2025, Volume: 30 Issue: 2, 266 - 281, 28.12.2025
https://doi.org/10.17557/tjfc.1620432

Abstract

Confronting the challenges of climate change, population expansion, and food security in Bangladesh demands the development of high-yielding, resilient rice varieties adapted to various agro-ecological zones. This study aimed to identify superior rice genotypes with consistent performance during the dry season (November-May) under irrigated condition using multi-environment trials (METs) at ten locations. Seven genotypes, along with a control variety, were evaluated for grain yield and agronomic parameters, including plant height, growth duration, panicle number, filled spikelets per panicle, and
thousand-grain weight (TGW). The genotype-by-environment interaction (GEI) was analyzed, and stability was assessed using Weighted Average of Absolute Scores with Yield (WAASBY) and Multi-Trait Stability Index (MTSI) metrics. Results revealed significant GEI effects, with genotype BR(Bio)9777-116-12-2-5 demonstrating the highest yield and stability across environments. Grain yield showed strong positive correlations with most traits except TGW. WAASBY analysis identified BR(Bio)9777-116-12-2-5 as top-performing and stable genotypes, whereas others, such as BR(Bio)9777-84-4-1-1 and BR(Bio)9777-123-4-6-1 were less productive and unstable. MTSI further confirmed the exceptional performance of BR(Bio)9777-116-12-2-5, highlighting its suitability for varied agro-ecological zones. These outcomes underscore the significance of combining yield and stability metrics in breeding programs providing a valuable framework for developing climate-resilient rice varieties to enhance productivity and ensure food security in Bangladesh. This research offers valuable guidance for addressing emerging agricultural challenges and promoting sustainable food systems in the face of global environmental and population pressures.

Supporting Institution

Bangladesh Rice Research Institute

References

  • Ambrósio, M., Daher, R.F., Santos, R.M., Santana, J.G.S., Vidal, A.K.F., Nascimento, M.R., Leite, C.L., de Souza, A.G., Freitas, R.F., Stida, W.F., Farias, J.E.C., Filho, B.F.D., Melo, L.C., & dos Santos, P.R. (2024). Multi-trait index: selection and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology. 24: 525. https://doi.org/10.1186/s12870-024-05248-5
  • Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection, Paper No. 174. FAO, Rome. https://www.researchgate.net/publication/285754548
  • Aruna, K., Kumar, B.M.D., Sridhara, S., Soujanya, B. A, Kumar K L, N., Moussa, I.M., Elansary, O.H., & Olivoto, T. (2024). Multi-trait stability index for identification of stable green gram (Vigna radiata (L.) Wilczek) genotypes with MYMV resistance. Heliyon. 10. https://doi.org/10.1016/j.heliyon.2024.e32763
  • Bangladesh Meteorological Department (BMD). (2019). Climate data. https://dataportal.bmd.gov.bd Bangladesh Rice Research Institute (BRRI). (2023). http://www.brri.gov.bd
  • Banjare, A.K., Verma, R., Shrivastava, R., Gupta, V., Meshram, P., John, S., Khute, I.K., Tiwari, A.K., & Rohit (2023). Association study and direct-indirect effects of characters for yield in rice (Oryza sativa L.). International Journal of Environment and Climate Change. 13. https://doi.org/10.9734/ijecc/2023/v13i92219
  • Chen, J., Cao, F., Liu, Y., Tao, Z., Lei, T., Abou-Elwafa, S.F., & Huang, M. (2022). Comparison of short-duration and longduration rice cultivars cultivated in various planting densities. Agronomy. 12(1739). https://doi.org/10.3390/agronomy12081739
  • Chen, K., Łyskowski, Ł., Jaremko, Ł., & Jaremko, M. (2021). Genetic and molecular factors determining grain weight in rice. Frontier Plant Science. 12. https://doi.org/10.3389/fpls.2021.605799
  • Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy. 44: 55–85. https://doi.org/10.1016/S0065- 2113(08)60818-4
  • Dyulgerova, B., & Dyulgerov, N. (2024). Genotype-by-year interaction and simultaneous selection for grain yield and stability in winter barley. Bulgarian Journal of Agricultural Science. 30(3): 466–475.
  • Eberhart, S.A., & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science. 6(1): 36–40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x
  • El-Aty, M.S., Abo-Youssef, M.I., Sorour, F.A., Salem, M., Gomma, M.A., Ibrahim, O.M., Yaghoubi Khanghahi, M., ALQAHTANI, W.H., Abdel‐Maksoud, M.A., & El-Tahan, A.M. (2024). Performance and stability for grain yield and its components of some rice cultivars under various environments. Agronomy. 14(2137). https://doi.org/10.3390/agronomy14092137
  • Gauch, H.G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science. 46: 1488–1500. https://doi.org/10.2135/CROPSCI2005.07-0193
  • Gauch, H.G., H. Piepho., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science. 48: 866–889. https://doi.org/10.2135/cropsci2007.09.0513
  • Ghazy, M.I., Abdelrahman, M., EL-Agoury, R.Y., El-Hefnawy, T.M., El-Naem, S.A., Daher, E.M., & Rehan. M. (2023). Exploring genetics by environment interactions in some rice genotypes across varied environmental conditions. Plants. 13. https://doi.org/10.3390/plants13010074
  • Ghulam Hussain, S. (2012). Chapter 5. Role of rice in food security of Bangladesh. In: Food Security: Quality Management, Issues and Economic Implications. Nova Publishers, Hauppauge. pp. 127–148.
  • Giri, A., Saxena, R.R., Sahoo, B., Saha, S., Rawte, S., Saxena, R.R., Verma, S.K., Porte, S.S., & Verulkar, S.B. (2021). Correlation and path analysis for yield and attributing traits in rice (Oryza sativa L.). The Pharma Innovation Journal. 10(10): 1409–1412.
  • Hasan-Ud-Daula., & Sarker, U. (2020). Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika. 52(2): 711–726. https://doi.org/10.2298/GENSR2002711H
  • Herawati, R., Lestari, A.P., Ganefianti. D.W., & Romeida, A. (2021). Comparative study on the stability and adaptability of different models to develop a high-yield inbred line from landrace rice varieties. Annals of Agricultural Sciences. https://doi.org/10.1016/j.aoas.2021.12.004
  • Hongyu, K., M. García-Peña, L.B. Araújo., & Santos Dias, C.T. (2014). Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters. 51: 102–89. https://doi.org/10.2478/bile-2014-0007
  • Huang, X., Jang, S., Kim, B., Piao, Z., Redona. E., & Koh, H.J. (2021). Evaluating genotype × environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical, and tropical environments. Agriculture (Switzerland). 11(6). https://doi.org/10.3390/agriculture11060558
  • Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., & Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics. 42(11): 961–967. https://doi.org/10.1038/ng.695
  • International Rice Research Institute (IRRI). (2018). Transforming rice-based agri-food systems in Asia. https://www.irri.org/
  • Jing, Q., Spiertz, J.H., Hengsdijk, H., Van Keulen, H., Cao, W., & Dai, T. (2010). Adaptation and performance of rice genotypes in tropical and subtropical environments. NJAS - Wageningen Journal of Life Science. 57: 149–157. https://doi.org/10.1016/j.njas.2010.04.002
  • Justo, S.B., H.G. Mkamilo, N.O. Danga, R. Bakari, F. Suleiman, R.A. Mwakapala, M.A. Batare, V.B. Bulegeya, S.S. Kashenge, W.T. Suvi, S. Lee, K. Txd, T. Komboka, I. Txd, &Tari. (2024). Genotype and genotype × environment interaction effects on the rice grain yield performance in different agro-ecologies in Tanzania. Journal of Plant Breeding and Crop Science. 16(2): 36–45. https://doi.org/10.5897/JPBCS2024.1038
  • Kanfany, G., M.A. Ayenan, Y.A. Zoclanclounon, T. Kane, M. Ndiaye, C. Diatta, J.P. Diatta, T. Gueye., & Fofana, A.T. (2021). Analysis of genotype-environment interaction and yield stability of introduced upland rice in the Groundnut Basin agroclimatic zone of Senegal. Advances in Agriculture. https://doi.org/10.1155/2021/4156167
  • Kawano, K., & Tanaka, A. (1968). Growth duration in relation to yield and nitrogen response in the rice plant. Japanese Journal of Breeding. 18: 46–52. https://doi.org/10.1270/JSBBS1951.18.46
  • Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology. 59: 1–6. https://doi.org/10.1007/s11103-005-2159-5
  • Kumar, B.M., A. Purushottam, P. Raghavendra, T. Vittal, K.N. Shubha., & Madhuri, R.D. (2020). Genotype × environment interaction and stability for yield and its components in advanced breeding lines of red rice (Oryza sativa L.). Bangladesh Journal of Botany. 49(3). https://doi.org/10.3329/bjb.v49i3.49328
  • Lata, S., Guleria, S.K., Dev, J., Katna, G., Sood, B.C., Kalia, V.K., & Singh, A. (2010). Stability analysis in maize (Zea mays L.) hybrids across locations. Electronics Journal of Plant Breeding. 1: 239–243.
  • Lee, S.Y., Lee, H., Lee, C., Ha, S., Park, H., Lee, S., Kwon, Y., Jeung, J., & Mo, Y. (2023). Multi-environment trials and stability analysis for yield-related traits of commercial rice cultivars. Agriculture. https://doi.org/10.3390/agriculture13020256
  • Li, Z., Pinson, S.R., Stansel, J.W., & Paterson, A.H. (1998). Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol. Breed. 4: 419–426. https://doi.org/10.1023/A:1009608128785
  • Liu, K., Zhang, K., Zhang, Y., Cui, J., Li, Z., Huang, J., Li, S., Zhang, J., Deng, S., Zhang, Y., Huang, J., Ren, L., Chu, Y., Zhao, H., & Chen, H. (2024). Optimizing the Total Spikelets Increased Grain Yield in Rice. Agronomy, 14(1), 152. https://doi.org/10.3390/agronomy14010152
  • Lobell, D.B., Cassman, K.G., & Field, C.B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environmental Resource. 34: 179–204. https://doi.org/10.1146/annurev.environ.041008.093740
  • Lu, Y., Chuan, M., Wang, H., Chen, R., Tao, T., Zhou, Y., Xu, Y., Li, P., Yao, Y., Xu, C., & Yang, Z. (2022). Genetic and molecular factors in determining grain number per panicle of rice. Frontier Plant Science. 13: 964246. https://doi.org/10.3389/fpls.2022.964246
  • Maclean, J.L., Dawe, D.C., Hardy, B., & Hettel, G.P. (2013). Rice almanac: Source book for one of the most important economic activities on earth. International Rice Research Institute. https://books.irri.org/9789712203008_content.pdf
  • Malosetti, M., Ribaut, J.M., & Van Eeuwijk, F.A., (2013). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology. 4(MAR): 1–17. https://doi.org/10.3389/fphys.2013.00044
  • Mohammadi, R., & Amri, A. (2012). Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica. 192: 227–249. https://doi.org/10.1007/s10681-012-0839-1
  • Mohammadi, R., Jafarzadeh, J., Poursiahbidi, M.M., Hatamzadeh, H., & Amri, A. (2023). Genotype-by-environment interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental covariates. Agricultural Research. 12: 364–374. https://doi.org/10.1007/s40003-023-00661-y
  • Moumeni, A., Mohaddesi, A., Amo-oughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi,V. (2018). Stability analysis and genotype × environment interaction for grain yield of rice (Oryza sativa L.) promising breeding lines. Iranian Journal of Crop Science. 20: 329–344.
  • Nafisah, Z., Satoto, J., Jamil, A., & Sasmita, P. (2020). Genotype by environment interaction for grain yield of salt tolerance rice genotypes in coastal saline area. Penelitian Pertanian Tanaman Pangan Journal. 4(1): 9–16. https://dx.doi.org/10.21082/jpptp.v4n1.2020.p9-16
  • Nataraj, V., Bhartiya, A., Singh, C.P., Devi, H.N., Deshmukh, M.P., Verghese, P., Singh, K., Mehtre, S.P., Kumari, V., Maranna, S., Kumawat, G., Ratnaparkhe, M.B., Satpute, G.K., Rajesh, V., Chandra, S., Ramteke, R., Khandekar, N., & Gupta, S. (2021). WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agronomy Journal. https://doi.org/10.1002/agj2.20750
  • Nishad, A., Mishra, A.N., Chaudhari, R., Aryan, R.K., & Katiyar, P. (2018). Effect of temperature on growth and yield of rice (Oryza sativa L.) cultivars. International Journal of Chemical Studies. 6(5): 1381–1383. https://www.researchgate.net/publication/330440940
  • Olivoto, T., & Lúcio, A.D.C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution. 11(6): 783–789. https://doi.org/10.1111/2041-210X.13384
  • Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q., & Jost, E. (2019). Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal. 111(6): 2949–2960. https://doi.org/10.2134/agronj2019.03.0220
  • Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G., & Diel, M.I. (2019). Mean performance and stability in multienvironment trials II: Selection based on multiple traits. Agronomy Journal. 111(6): 2961–2969. https://doi.org/10.2134/agronj2019.03.0221
  • Pallavi, M., Shanthi, P., Reddy, V.L., Kumar, A.N., & Maruthi, P. B. (2024). Selection index for enhanced yield in rice genotypes. Oryza-An International Journal of Rice. https://doi.org/10.35709/ory.2024.61.2.10
  • Parida, A.K., Sekhar, S., Panda, B.B., Sahu, G., & Shaw, B.P. (2022). Effect of panicle morphology on grain filling and rice yield: Genetic control and molecular regulation. Frontier Genetics. 13: 876198. https://doi.org/10.3389/fgene.2022.876198
  • Poli, Y., Balakrishnan, D., Desiraju, S., Panigrahy, M., Voleti, S.R., Mangrauthia, S.K., & Neelamraju, S. (2018). Genotype × environment interactions of Nagina22 rice mutants for yield traits under low phosphorus, water-limited, and normal irrigated conditions. Scientific Reports. 8: 33812. https://doi.org/10.1038/s41598-018-33812-1
  • Ponsiva, S.T., Senthilkumar, N., Vanitha, J., Anandan, A., Satheeskumar, K., Mahendran, R., & Thirugnanakumar, S. (2024). Detection of superior rice genotypes and yield stability using AMMI and MTSI models. Electronic Journal of Plant Breeding. 15(2). https://doi.org/10.37992/2024.1502.057
  • Pradhan, P., Das, B., Kumar, D., Phani, V., & Kundu, S. (2024). Deciphering rice genotypes under submergence stress and optimum condition for yield stability analysis. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.70005
  • Prakash, S., Srivastava, K.K., & Yadav, R.R. (2019). Character association and path analysis of yield-contributing traits and quality parameters in rice (Oryza sativa L.). International Journal of Chemical Studies. 7: 1264–1268.
  • Rabbi, S.M.H., Biswas, P., Rashid, E.S.M., Iftekharuddaula, K.M., Rahman, N.M.F., Rahman, M.S., Sarkar, M.A.R., Mamun, M.A.A., Salam, M.U., & Kabir, M.S. (2021). Increasing rice yield through targeting genetic potentials by rice types. Bangladesh Rice Journal. 24(2): 67–82. https://doi.org/10.3329/brj.v24i2.53449
  • Rang, Z., Jagadish, S.V., Zhou, Q., Craufurd, P., & Heuer, S. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany. 70: 58–65. https://doi.org/10.1016/j.envexpbot.2010.08.009
  • Rani, G.B., Ahmed, L., Rani, A., & Rao, S. (2018). Breeding strategies for lodging resistance in rice. International Journal of Bio-resources and Stress Management. 8(6): 895–903. https://doi.org/10.23910/IJBSM/2017.8.6.1793a
  • Sadimantara, G.R., Muhidin, & Nuraida, W.O. (2023). Evaluation of yield attributing characters and grain yield in some promising red rice lines (Oryza sativa L.) grown in the lowland conditions. IOP Conference Series Earth and Environmental Science. 1241. https://doi.org/10.1088/1755-1315/1241/1/012038
  • Sampaio Filho, J.S., Olivoto, T., Campos, M.D., & de Oliveira, E.J. (2023). Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Frontier Plant Science. 14. https://doi.org/10.3389/fpls.2023.1282221
  • Saran, D., Gauraha, D., Sao, A., Sandilya, V.K., & Kumar, R. (2023). Correlation and path coefficient analysis for yield and yield-attributing traits in rice (Oryza sativa L.). International Journal of Plant & Soil Science. 35(18): 94–101. https://doi.org/10.9734/ijpss/2023/v35i183271
  • Sasaki, K., Fujita, D., Koide, Y., Lumanglas, P.D., Gannaban, R.B., Tagle, A.G., Obara, M., Fukuta, Y., Kobayashi, N., & Ishimaru, T. (2017). Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant-type rice and evaluation of a near-isogenic line for grain productivity. Journal of Experimental Botany. 68(11): 2693–2702. https://doi.org/10.1093/jxb/erx128
  • Saud, S., Wang, D., Fahad, S., Alharby, H.F., Bamagoos, A.A., Mjrashi, A., Alabdallah, N.M., Alzahrani, S.S., AbdElgawad, H., Adnan, M., Sayyed, R.Z., Ali, S., & Hassan, S. (2022). Comprehensive impacts of climate change on rice production and adaptive strategies in China. Frontier Microbiology. 13. https://doi.org/10.3389/fmicb.2022.926059
  • Shahidullah, S.M., Hanafi, M.M., Ashrafuzzaman, M., Uddin, M.K., & Razi-Ismail, M. (2010). Analysis of grain density and yield characters in aromatic rice genotypes. Agrociencia. 44: 325-337.
  • Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi. A. (2020). Stability of some rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics and Plant Breeding. 9(2): 1-11. https://doi.org/10.30479/ijgpb.2021.14432.1283
  • Sheehy, J. E., Dionora, M. J. A., & Mitchell, P. L. (2001). Spikelet numbers, sink size and potential yield in rice. Field Crops Research, 71(2), 77–85. https://doi.org/10.1016/S0378-4290(01)00145-9
  • Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot, and MTSI. Scientific Reports. 13: 10019. https://doi.org/10.1038/s41598- 023-37217-7
  • Tiwari, D.N., Pandey, M.P., Manandhar, H.K., & Bhusal, T.N. (2024). Genotype by Environment Interaction Using AMMI, GGE Biplot and Multivariate Analysis of Nepalese Aromatic Rice Landraces. Agronomy Journal of Nepal. 8(1): 34-51. https://doi.org/10.3126/ajn.v8i1.70767
  • Tiwari, V., Saxena, R.R., Singh, D., & Gupta, S. (2018). Genotype and environment interaction analysis by AMMI model and GGE bi plot. Journal of Pharmcognosy and Phytochemistry. 7(4): 887-891.
  • Unnati, P., Pathik, P., Lalit, M., &. Bilwal, B.B. (2017). Stability analysis for grain yield and its attributing traits of rice across locations. International Journal of Current Microbiology and Applied Science. 6: 2102-2111. https://doi.org/10.20546/IJCMAS.2017.611.248
  • Vergara, B.S., Tanaka, A., Lilis, R., & Puranabhavung, S. 1966. Relationship between growth duration and grain yield of rice plants. Soil Science and Plant Nutrition. 12: 31-39. https://doi.org/10.1080/00380768.1966.10431180
  • Wang, Y., He, W., Yan, C., Gao, H., Cui, J., & Liu, Q. (2024). Environmental impact of various rice cultivation methods in Northeast China through life cycle assessment. Agronomy. 14(2): 267. https://doi.org/10.3390/agronomy14020267
  • Wang, Y., Wang, X., Zhai, L., Zafar, S., Shen, C., Zhu, S., Chen, K., & Xu. J. (2023). A novel effective panicle number per plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. The Crop Journal. https://doi.org/10.1016/j.cj.2023.11.003
  • Yan, W., & Kang. M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.). CRC Press. https://doi.org/10.1201/9781420040371
  • Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science. 47(2): 643–655. https://doi.org/10.2135/cropsci2006.06.0374
  • Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., Ito, A., Koketsu, E., Kawamura, M., Kotake, K., Yoshida, S., Endo, M., Tamiya, G., Kitano, H., Ueguchi-Tanaka, M., Hirano, K., & Matsuoka. M. (2019). GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proceedings of the National Academy of Sciences. USA 116: 21262-21267. https://doi.org/10.1073/pnas.1904964116
  • Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection for mean performance and stability of maize hybrids in mega-environments delineated using enviro-typing techniques. Frontier Plant Science. 13. https://doi.org/10.3389/fpls.2022.1030521
  • Zuffo, A.M., Steiner, F., Aguilera, J.G., Teodoro, P.E., Teodoro, L.P.R., & Busch, A. (2020). Multi-trait stability index: A tool for simultaneous selection of soybean genotypes in drought and saline stress. Journal of Agronomy and Crop Science. 206(6): 815–822. https://doi.org/10.1111/jac.12409
There are 74 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Research Article
Authors

Md Arafat Hossain 0000-0002-5546-1387

Md. Abdullah Al Mamun 0000-0001-7535-1743

S M Hisam Al Rabbi 0009-0004-1424-4767

Shampa Das Joya 0009-0008-5901-2299

Md Masud Rana 0009-0001-4696-0926

Md Hasibur Rahaman Hera 0000-0002-9182-4528

Rishad Sharmin 0009-0009-9530-3867

Ripon Kumar Roy 0009-0009-6579-9857

Submission Date January 18, 2025
Acceptance Date August 4, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Hossain, M. A., Mamun, M. A. A., Al Rabbi, S. M. H., … Joya, S. D. (2025). Identification of Stable Rice Genotypes Using WAASB and MTSI Indices. Turkish Journal Of Field Crops, 30(2), 266-281. https://doi.org/10.17557/tjfc.1620432

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture, Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org