Year 2025,
Volume: 30 Issue: 2, 266 - 281, 28.12.2025
Md Arafat Hossain
,
Md. Abdullah Al Mamun
,
S M Hisam Al Rabbi
,
Shampa Das Joya
,
Md Masud Rana
,
Md Hasibur Rahaman Hera
,
Rishad Sharmin
,
Ripon Kumar Roy
References
-
Ambrósio, M., Daher, R.F., Santos, R.M., Santana, J.G.S., Vidal, A.K.F., Nascimento, M.R., Leite, C.L., de Souza, A.G.,
Freitas, R.F., Stida, W.F., Farias, J.E.C., Filho, B.F.D., Melo, L.C., & dos Santos, P.R. (2024). Multi-trait index: selection
and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology. 24: 525.
https://doi.org/10.1186/s12870-024-05248-5
-
Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar
Recommendations. FAO Plant Production and Protection, Paper No. 174. FAO, Rome.
https://www.researchgate.net/publication/285754548
-
Aruna, K., Kumar, B.M.D., Sridhara, S., Soujanya, B. A, Kumar K L, N., Moussa, I.M., Elansary, O.H., & Olivoto, T. (2024).
Multi-trait stability index for identification of stable green gram (Vigna radiata (L.) Wilczek) genotypes with MYMV
resistance. Heliyon. 10. https://doi.org/10.1016/j.heliyon.2024.e32763
-
Bangladesh Meteorological Department (BMD). (2019). Climate data. https://dataportal.bmd.gov.bd
Bangladesh Rice Research Institute (BRRI). (2023). http://www.brri.gov.bd
-
Banjare, A.K., Verma, R., Shrivastava, R., Gupta, V., Meshram, P., John, S., Khute, I.K., Tiwari, A.K., & Rohit (2023).
Association study and direct-indirect effects of characters for yield in rice (Oryza sativa L.). International Journal of
Environment and Climate Change. 13. https://doi.org/10.9734/ijecc/2023/v13i92219
-
Chen, J., Cao, F., Liu, Y., Tao, Z., Lei, T., Abou-Elwafa, S.F., & Huang, M. (2022). Comparison of short-duration and longduration rice cultivars cultivated in various planting densities. Agronomy. 12(1739).
https://doi.org/10.3390/agronomy12081739
-
Chen, K., Łyskowski, Ł., Jaremko, Ł., & Jaremko, M. (2021). Genetic and molecular factors determining grain weight in rice.
Frontier Plant Science. 12. https://doi.org/10.3389/fpls.2021.605799
-
Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy. 44: 55–85. https://doi.org/10.1016/S0065-
2113(08)60818-4
-
Dyulgerova, B., & Dyulgerov, N. (2024). Genotype-by-year interaction and simultaneous selection for grain yield and stability
in winter barley. Bulgarian Journal of Agricultural Science. 30(3): 466–475.
-
Eberhart, S.A., & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science. 6(1): 36–40.
https://doi.org/10.2135/cropsci1966.0011183x000600010011x
-
El-Aty, M.S., Abo-Youssef, M.I., Sorour, F.A., Salem, M., Gomma, M.A., Ibrahim, O.M., Yaghoubi Khanghahi, M., ALQAHTANI, W.H., Abdel‐Maksoud, M.A., & El-Tahan, A.M. (2024). Performance and stability for grain yield and its
components of some rice cultivars under various environments. Agronomy. 14(2137).
https://doi.org/10.3390/agronomy14092137
-
Gauch, H.G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science. 46: 1488–1500.
https://doi.org/10.2135/CROPSCI2005.07-0193
-
Gauch, H.G., H. Piepho., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further
considerations. Crop Science. 48: 866–889. https://doi.org/10.2135/cropsci2007.09.0513
-
Ghazy, M.I., Abdelrahman, M., EL-Agoury, R.Y., El-Hefnawy, T.M., El-Naem, S.A., Daher, E.M., & Rehan. M. (2023).
Exploring genetics by environment interactions in some rice genotypes across varied environmental conditions. Plants. 13.
https://doi.org/10.3390/plants13010074
-
Ghulam Hussain, S. (2012). Chapter 5. Role of rice in food security of Bangladesh. In: Food Security: Quality Management,
Issues and Economic Implications. Nova Publishers, Hauppauge. pp. 127–148.
-
Giri, A., Saxena, R.R., Sahoo, B., Saha, S., Rawte, S., Saxena, R.R., Verma, S.K., Porte, S.S., & Verulkar, S.B. (2021).
Correlation and path analysis for yield and attributing traits in rice (Oryza sativa L.). The Pharma Innovation Journal.
10(10): 1409–1412.
-
Hasan-Ud-Daula., & Sarker, U. (2020). Variability, heritability, character association, and path coefficient analysis in advanced
breeding lines of rice (Oryza sativa L.). Genetika. 52(2): 711–726. https://doi.org/10.2298/GENSR2002711H
-
Herawati, R., Lestari, A.P., Ganefianti. D.W., & Romeida, A. (2021). Comparative study on the stability and adaptability of
different models to develop a high-yield inbred line from landrace rice varieties. Annals of Agricultural Sciences.
https://doi.org/10.1016/j.aoas.2021.12.004
-
Hongyu, K., M. García-Peña, L.B. Araújo., & Santos Dias, C.T. (2014). Statistical analysis of yield trials by AMMI analysis
of genotype × environment interaction. Biometrical Letters. 51: 102–89. https://doi.org/10.2478/bile-2014-0007
-
Huang, X., Jang, S., Kim, B., Piao, Z., Redona. E., & Koh, H.J. (2021). Evaluating genotype × environment interactions of
yield traits and adaptability in rice cultivars grown under temperate, subtropical, and tropical environments. Agriculture
(Switzerland). 11(6). https://doi.org/10.3390/agriculture11060558
-
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang,
A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., & Han, B. (2010). Genome-wide association studies of 14
agronomic traits in rice landraces. Nature Genetics. 42(11): 961–967. https://doi.org/10.1038/ng.695
-
International Rice Research Institute (IRRI). (2018). Transforming rice-based agri-food systems in Asia. https://www.irri.org/
-
Jing, Q., Spiertz, J.H., Hengsdijk, H., Van Keulen, H., Cao, W., & Dai, T. (2010). Adaptation and performance of rice genotypes
in tropical and subtropical environments. NJAS - Wageningen Journal of Life Science. 57: 149–157.
https://doi.org/10.1016/j.njas.2010.04.002
-
Justo, S.B., H.G. Mkamilo, N.O. Danga, R. Bakari, F. Suleiman, R.A. Mwakapala, M.A. Batare, V.B. Bulegeya, S.S. Kashenge,
W.T. Suvi, S. Lee, K. Txd, T. Komboka, I. Txd, &Tari. (2024). Genotype and genotype × environment interaction effects
on the rice grain yield performance in different agro-ecologies in Tanzania. Journal of Plant Breeding and Crop Science.
16(2): 36–45. https://doi.org/10.5897/JPBCS2024.1038
-
Kanfany, G., M.A. Ayenan, Y.A. Zoclanclounon, T. Kane, M. Ndiaye, C. Diatta, J.P. Diatta, T. Gueye., & Fofana, A.T. (2021).
Analysis of genotype-environment interaction and yield stability of introduced upland rice in the Groundnut Basin
agroclimatic zone of Senegal. Advances in Agriculture. https://doi.org/10.1155/2021/4156167
-
Kawano, K., & Tanaka, A. (1968). Growth duration in relation to yield and nitrogen response in the rice plant. Japanese Journal
of Breeding. 18: 46–52. https://doi.org/10.1270/JSBBS1951.18.46
-
Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology. 59: 1–6.
https://doi.org/10.1007/s11103-005-2159-5
-
Kumar, B.M., A. Purushottam, P. Raghavendra, T. Vittal, K.N. Shubha., & Madhuri, R.D. (2020). Genotype × environment
interaction and stability for yield and its components in advanced breeding lines of red rice (Oryza sativa L.). Bangladesh
Journal of Botany. 49(3). https://doi.org/10.3329/bjb.v49i3.49328
-
Lata, S., Guleria, S.K., Dev, J., Katna, G., Sood, B.C., Kalia, V.K., & Singh, A. (2010). Stability analysis in maize (Zea mays
L.) hybrids across locations. Electronics Journal of Plant Breeding. 1: 239–243.
-
Lee, S.Y., Lee, H., Lee, C., Ha, S., Park, H., Lee, S., Kwon, Y., Jeung, J., & Mo, Y. (2023). Multi-environment trials and
stability analysis for yield-related traits of commercial rice cultivars. Agriculture.
https://doi.org/10.3390/agriculture13020256
-
Li, Z., Pinson, S.R., Stansel, J.W., & Paterson, A.H. (1998). Genetic dissection of the source-sink relationship affecting
fecundity and yield in rice (Oryza sativa L.). Mol. Breed. 4: 419–426. https://doi.org/10.1023/A:1009608128785
-
Liu, K., Zhang, K., Zhang, Y., Cui, J., Li, Z., Huang, J., Li, S., Zhang, J., Deng, S., Zhang, Y., Huang, J., Ren, L., Chu, Y.,
Zhao, H., & Chen, H. (2024). Optimizing the Total Spikelets Increased Grain Yield in Rice. Agronomy, 14(1), 152.
https://doi.org/10.3390/agronomy14010152
-
Lobell, D.B., Cassman, K.G., & Field, C.B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review
of Environmental Resource. 34: 179–204. https://doi.org/10.1146/annurev.environ.041008.093740
-
Lu, Y., Chuan, M., Wang, H., Chen, R., Tao, T., Zhou, Y., Xu, Y., Li, P., Yao, Y., Xu, C., & Yang, Z. (2022). Genetic and
molecular factors in determining grain number per panicle of rice. Frontier Plant Science. 13: 964246.
https://doi.org/10.3389/fpls.2022.964246
-
Maclean, J.L., Dawe, D.C., Hardy, B., & Hettel, G.P. (2013). Rice almanac: Source book for one of the most important
economic activities on earth. International Rice Research Institute. https://books.irri.org/9789712203008_content.pdf
-
Malosetti, M., Ribaut, J.M., & Van Eeuwijk, F.A., (2013). The statistical analysis of multi-environment data: Modeling
genotype-by-environment interaction and its genetic basis. Frontiers in Physiology. 4(MAR): 1–17.
https://doi.org/10.3389/fphys.2013.00044
-
Mohammadi, R., & Amri, A. (2012). Genotype × environment interaction and genetic improvement for yield and yield stability
of rainfed durum wheat in Iran. Euphytica. 192: 227–249. https://doi.org/10.1007/s10681-012-0839-1
-
Mohammadi, R., Jafarzadeh, J., Poursiahbidi, M.M., Hatamzadeh, H., & Amri, A. (2023). Genotype-by-environment
interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental
covariates. Agricultural Research. 12: 364–374. https://doi.org/10.1007/s40003-023-00661-y
-
Moumeni, A., Mohaddesi, A., Amo-oughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi,V. (2018). Stability analysis and
genotype × environment interaction for grain yield of rice (Oryza sativa L.) promising breeding lines. Iranian Journal of
Crop Science. 20: 329–344.
-
Nafisah, Z., Satoto, J., Jamil, A., & Sasmita, P. (2020). Genotype by environment interaction for grain yield of salt tolerance
rice genotypes in coastal saline area. Penelitian Pertanian Tanaman Pangan Journal. 4(1): 9–16.
https://dx.doi.org/10.21082/jpptp.v4n1.2020.p9-16
-
Nataraj, V., Bhartiya, A., Singh, C.P., Devi, H.N., Deshmukh, M.P., Verghese, P., Singh, K., Mehtre, S.P., Kumari, V.,
Maranna, S., Kumawat, G., Ratnaparkhe, M.B., Satpute, G.K., Rajesh, V., Chandra, S., Ramteke, R., Khandekar, N., &
Gupta, S. (2021). WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean.
Agronomy Journal. https://doi.org/10.1002/agj2.20750
-
Nishad, A., Mishra, A.N., Chaudhari, R., Aryan, R.K., & Katiyar, P. (2018). Effect of temperature on growth and yield of rice
(Oryza sativa L.) cultivars. International Journal of Chemical Studies. 6(5): 1381–1383.
https://www.researchgate.net/publication/330440940
-
Olivoto, T., & Lúcio, A.D.C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and
Evolution. 11(6): 783–789. https://doi.org/10.1111/2041-210X.13384
-
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q., & Jost, E. (2019). Mean performance and
stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal. 111(6):
2949–2960. https://doi.org/10.2134/agronj2019.03.0220
-
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G., & Diel, M.I. (2019). Mean performance and stability in multienvironment trials II: Selection based on multiple traits. Agronomy Journal. 111(6): 2961–2969.
https://doi.org/10.2134/agronj2019.03.0221
-
Pallavi, M., Shanthi, P., Reddy, V.L., Kumar, A.N., & Maruthi, P. B. (2024). Selection index for enhanced yield in rice
genotypes. Oryza-An International Journal of Rice. https://doi.org/10.35709/ory.2024.61.2.10
-
Parida, A.K., Sekhar, S., Panda, B.B., Sahu, G., & Shaw, B.P. (2022). Effect of panicle morphology on grain filling and rice
yield: Genetic control and molecular regulation. Frontier Genetics. 13: 876198. https://doi.org/10.3389/fgene.2022.876198
-
Poli, Y., Balakrishnan, D., Desiraju, S., Panigrahy, M., Voleti, S.R., Mangrauthia, S.K., & Neelamraju, S. (2018).
Genotype × environment interactions of Nagina22 rice mutants for yield traits under low phosphorus, water-limited, and
normal irrigated conditions. Scientific Reports. 8: 33812. https://doi.org/10.1038/s41598-018-33812-1
-
Ponsiva, S.T., Senthilkumar, N., Vanitha, J., Anandan, A., Satheeskumar, K., Mahendran, R., & Thirugnanakumar, S. (2024).
Detection of superior rice genotypes and yield stability using AMMI and MTSI models. Electronic Journal of Plant
Breeding. 15(2). https://doi.org/10.37992/2024.1502.057
-
Pradhan, P., Das, B., Kumar, D., Phani, V., & Kundu, S. (2024). Deciphering rice genotypes under submergence stress and
optimum condition for yield stability analysis. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.70005
-
Prakash, S., Srivastava, K.K., & Yadav, R.R. (2019). Character association and path analysis of yield-contributing traits and
quality parameters in rice (Oryza sativa L.). International Journal of Chemical Studies. 7: 1264–1268.
-
Rabbi, S.M.H., Biswas, P., Rashid, E.S.M., Iftekharuddaula, K.M., Rahman, N.M.F., Rahman, M.S., Sarkar, M.A.R., Mamun,
M.A.A., Salam, M.U., & Kabir, M.S. (2021). Increasing rice yield through targeting genetic potentials by rice types.
Bangladesh Rice Journal. 24(2): 67–82. https://doi.org/10.3329/brj.v24i2.53449
-
Rang, Z., Jagadish, S.V., Zhou, Q., Craufurd, P., & Heuer, S. (2011). Effect of high temperature and water stress on pollen
germination and spikelet fertility in rice. Environmental and Experimental Botany. 70: 58–65.
https://doi.org/10.1016/j.envexpbot.2010.08.009
-
Rani, G.B., Ahmed, L., Rani, A., & Rao, S. (2018). Breeding strategies for lodging resistance in rice. International Journal of
Bio-resources and Stress Management. 8(6): 895–903. https://doi.org/10.23910/IJBSM/2017.8.6.1793a
-
Sadimantara, G.R., Muhidin, & Nuraida, W.O. (2023). Evaluation of yield attributing characters and grain yield in some
promising red rice lines (Oryza sativa L.) grown in the lowland conditions. IOP Conference Series Earth and
Environmental Science. 1241. https://doi.org/10.1088/1755-1315/1241/1/012038
-
Sampaio Filho, J.S., Olivoto, T., Campos, M.D., & de Oliveira, E.J. (2023). Multi-trait selection in multi-environments for
performance and stability in cassava genotypes. Frontier Plant Science. 14. https://doi.org/10.3389/fpls.2023.1282221
-
Saran, D., Gauraha, D., Sao, A., Sandilya, V.K., & Kumar, R. (2023). Correlation and path coefficient analysis for yield and
yield-attributing traits in rice (Oryza sativa L.). International Journal of Plant & Soil Science. 35(18): 94–101.
https://doi.org/10.9734/ijpss/2023/v35i183271
-
Sasaki, K., Fujita, D., Koide, Y., Lumanglas, P.D., Gannaban, R.B., Tagle, A.G., Obara, M., Fukuta, Y., Kobayashi, N., &
Ishimaru, T. (2017). Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant-type rice and
evaluation of a near-isogenic line for grain productivity. Journal of Experimental Botany. 68(11): 2693–2702.
https://doi.org/10.1093/jxb/erx128
-
Saud, S., Wang, D., Fahad, S., Alharby, H.F., Bamagoos, A.A., Mjrashi, A., Alabdallah, N.M., Alzahrani, S.S., AbdElgawad,
H., Adnan, M., Sayyed, R.Z., Ali, S., & Hassan, S. (2022). Comprehensive impacts of climate change on rice production
and adaptive strategies in China. Frontier Microbiology. 13. https://doi.org/10.3389/fmicb.2022.926059
-
Shahidullah, S.M., Hanafi, M.M., Ashrafuzzaman, M., Uddin, M.K., & Razi-Ismail, M. (2010). Analysis of grain density and
yield characters in aromatic rice genotypes. Agrociencia. 44: 325-337.
-
Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi. A. (2020). Stability of some rice genotypes based on WAASB and MTSI
indices. Iranian Journal of Genetics and Plant Breeding. 9(2): 1-11. https://doi.org/10.30479/ijgpb.2021.14432.1283
-
Sheehy, J. E., Dionora, M. J. A., & Mitchell, P. L. (2001). Spikelet numbers, sink size and potential yield in rice. Field Crops
Research, 71(2), 77–85. https://doi.org/10.1016/S0378-4290(01)00145-9
-
Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.)
genotypes using AMMI, BLUP, GGE biplot, and MTSI. Scientific Reports. 13: 10019. https://doi.org/10.1038/s41598-
023-37217-7
-
Tiwari, D.N., Pandey, M.P., Manandhar, H.K., & Bhusal, T.N. (2024). Genotype by Environment Interaction Using AMMI,
GGE Biplot and Multivariate Analysis of Nepalese Aromatic Rice Landraces. Agronomy Journal of Nepal. 8(1): 34-51.
https://doi.org/10.3126/ajn.v8i1.70767
-
Tiwari, V., Saxena, R.R., Singh, D., & Gupta, S. (2018). Genotype and environment interaction analysis by AMMI model and
GGE bi plot. Journal of Pharmcognosy and Phytochemistry. 7(4): 887-891.
-
Unnati, P., Pathik, P., Lalit, M., &. Bilwal, B.B. (2017). Stability analysis for grain yield and its attributing traits of rice across
locations. International Journal of Current Microbiology and Applied Science. 6: 2102-2111.
https://doi.org/10.20546/IJCMAS.2017.611.248
-
Vergara, B.S., Tanaka, A., Lilis, R., & Puranabhavung, S. 1966. Relationship between growth duration and grain yield of rice
plants. Soil Science and Plant Nutrition. 12: 31-39. https://doi.org/10.1080/00380768.1966.10431180
-
Wang, Y., He, W., Yan, C., Gao, H., Cui, J., & Liu, Q. (2024). Environmental impact of various rice cultivation methods in
Northeast China through life cycle assessment. Agronomy. 14(2): 267. https://doi.org/10.3390/agronomy14020267
-
Wang, Y., Wang, X., Zhai, L., Zafar, S., Shen, C., Zhu, S., Chen, K., & Xu. J. (2023). A novel effective panicle number per
plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. The Crop Journal.
https://doi.org/10.1016/j.cj.2023.11.003
-
Yan, W., & Kang. M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.).
CRC Press. https://doi.org/10.1201/9781420040371
-
Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science. 47(2): 643–655. https://doi.org/10.2135/cropsci2006.06.0374
-
Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., Ito, A., Koketsu, E., Kawamura, M., Kotake, K., Yoshida,
S., Endo, M., Tamiya, G., Kitano, H., Ueguchi-Tanaka, M., Hirano, K., & Matsuoka. M. (2019). GWAS with principal
component analysis identifies a gene comprehensively controlling rice architecture. Proceedings of the National Academy
of Sciences. USA 116: 21262-21267. https://doi.org/10.1073/pnas.1904964116
-
Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection
for mean performance and stability of maize hybrids in mega-environments delineated using enviro-typing techniques.
Frontier Plant Science. 13. https://doi.org/10.3389/fpls.2022.1030521
-
Zuffo, A.M., Steiner, F., Aguilera, J.G., Teodoro, P.E., Teodoro, L.P.R., & Busch, A. (2020). Multi-trait stability index: A tool
for simultaneous selection of soybean genotypes in drought and saline stress. Journal of Agronomy and Crop Science.
206(6): 815–822. https://doi.org/10.1111/jac.12409
Identification of Stable Rice Genotypes Using WAASB and MTSI Indices
Year 2025,
Volume: 30 Issue: 2, 266 - 281, 28.12.2025
Md Arafat Hossain
,
Md. Abdullah Al Mamun
,
S M Hisam Al Rabbi
,
Shampa Das Joya
,
Md Masud Rana
,
Md Hasibur Rahaman Hera
,
Rishad Sharmin
,
Ripon Kumar Roy
Abstract
Confronting the challenges of climate change, population expansion, and food security in Bangladesh demands the development of high-yielding, resilient rice varieties adapted to various agro-ecological zones. This study aimed to identify superior rice genotypes with consistent performance during the dry season (November-May) under irrigated condition using multi-environment trials (METs) at ten locations. Seven genotypes, along with a control variety, were evaluated for grain yield and agronomic parameters, including plant height, growth duration, panicle number, filled spikelets per panicle, and
thousand-grain weight (TGW). The genotype-by-environment interaction (GEI) was analyzed, and stability was assessed using Weighted Average of Absolute Scores with Yield (WAASBY) and Multi-Trait Stability Index (MTSI) metrics. Results revealed significant GEI effects, with genotype BR(Bio)9777-116-12-2-5 demonstrating the highest yield and stability across environments. Grain yield showed strong positive correlations with most traits except TGW. WAASBY analysis identified BR(Bio)9777-116-12-2-5 as top-performing and stable genotypes, whereas others, such as BR(Bio)9777-84-4-1-1 and BR(Bio)9777-123-4-6-1 were less productive and unstable. MTSI further confirmed the exceptional performance of BR(Bio)9777-116-12-2-5, highlighting its suitability for varied agro-ecological zones. These outcomes underscore the significance of combining yield and stability metrics in breeding programs providing a valuable framework for developing climate-resilient rice varieties to enhance productivity and ensure food security in Bangladesh. This research offers valuable guidance for addressing emerging agricultural challenges and promoting sustainable food systems in the face of global environmental and population pressures.
Supporting Institution
Bangladesh Rice Research Institute
References
-
Ambrósio, M., Daher, R.F., Santos, R.M., Santana, J.G.S., Vidal, A.K.F., Nascimento, M.R., Leite, C.L., de Souza, A.G.,
Freitas, R.F., Stida, W.F., Farias, J.E.C., Filho, B.F.D., Melo, L.C., & dos Santos, P.R. (2024). Multi-trait index: selection
and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology. 24: 525.
https://doi.org/10.1186/s12870-024-05248-5
-
Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar
Recommendations. FAO Plant Production and Protection, Paper No. 174. FAO, Rome.
https://www.researchgate.net/publication/285754548
-
Aruna, K., Kumar, B.M.D., Sridhara, S., Soujanya, B. A, Kumar K L, N., Moussa, I.M., Elansary, O.H., & Olivoto, T. (2024).
Multi-trait stability index for identification of stable green gram (Vigna radiata (L.) Wilczek) genotypes with MYMV
resistance. Heliyon. 10. https://doi.org/10.1016/j.heliyon.2024.e32763
-
Bangladesh Meteorological Department (BMD). (2019). Climate data. https://dataportal.bmd.gov.bd
Bangladesh Rice Research Institute (BRRI). (2023). http://www.brri.gov.bd
-
Banjare, A.K., Verma, R., Shrivastava, R., Gupta, V., Meshram, P., John, S., Khute, I.K., Tiwari, A.K., & Rohit (2023).
Association study and direct-indirect effects of characters for yield in rice (Oryza sativa L.). International Journal of
Environment and Climate Change. 13. https://doi.org/10.9734/ijecc/2023/v13i92219
-
Chen, J., Cao, F., Liu, Y., Tao, Z., Lei, T., Abou-Elwafa, S.F., & Huang, M. (2022). Comparison of short-duration and longduration rice cultivars cultivated in various planting densities. Agronomy. 12(1739).
https://doi.org/10.3390/agronomy12081739
-
Chen, K., Łyskowski, Ł., Jaremko, Ł., & Jaremko, M. (2021). Genetic and molecular factors determining grain weight in rice.
Frontier Plant Science. 12. https://doi.org/10.3389/fpls.2021.605799
-
Crossa, J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy. 44: 55–85. https://doi.org/10.1016/S0065-
2113(08)60818-4
-
Dyulgerova, B., & Dyulgerov, N. (2024). Genotype-by-year interaction and simultaneous selection for grain yield and stability
in winter barley. Bulgarian Journal of Agricultural Science. 30(3): 466–475.
-
Eberhart, S.A., & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science. 6(1): 36–40.
https://doi.org/10.2135/cropsci1966.0011183x000600010011x
-
El-Aty, M.S., Abo-Youssef, M.I., Sorour, F.A., Salem, M., Gomma, M.A., Ibrahim, O.M., Yaghoubi Khanghahi, M., ALQAHTANI, W.H., Abdel‐Maksoud, M.A., & El-Tahan, A.M. (2024). Performance and stability for grain yield and its
components of some rice cultivars under various environments. Agronomy. 14(2137).
https://doi.org/10.3390/agronomy14092137
-
Gauch, H.G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science. 46: 1488–1500.
https://doi.org/10.2135/CROPSCI2005.07-0193
-
Gauch, H.G., H. Piepho., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further
considerations. Crop Science. 48: 866–889. https://doi.org/10.2135/cropsci2007.09.0513
-
Ghazy, M.I., Abdelrahman, M., EL-Agoury, R.Y., El-Hefnawy, T.M., El-Naem, S.A., Daher, E.M., & Rehan. M. (2023).
Exploring genetics by environment interactions in some rice genotypes across varied environmental conditions. Plants. 13.
https://doi.org/10.3390/plants13010074
-
Ghulam Hussain, S. (2012). Chapter 5. Role of rice in food security of Bangladesh. In: Food Security: Quality Management,
Issues and Economic Implications. Nova Publishers, Hauppauge. pp. 127–148.
-
Giri, A., Saxena, R.R., Sahoo, B., Saha, S., Rawte, S., Saxena, R.R., Verma, S.K., Porte, S.S., & Verulkar, S.B. (2021).
Correlation and path analysis for yield and attributing traits in rice (Oryza sativa L.). The Pharma Innovation Journal.
10(10): 1409–1412.
-
Hasan-Ud-Daula., & Sarker, U. (2020). Variability, heritability, character association, and path coefficient analysis in advanced
breeding lines of rice (Oryza sativa L.). Genetika. 52(2): 711–726. https://doi.org/10.2298/GENSR2002711H
-
Herawati, R., Lestari, A.P., Ganefianti. D.W., & Romeida, A. (2021). Comparative study on the stability and adaptability of
different models to develop a high-yield inbred line from landrace rice varieties. Annals of Agricultural Sciences.
https://doi.org/10.1016/j.aoas.2021.12.004
-
Hongyu, K., M. García-Peña, L.B. Araújo., & Santos Dias, C.T. (2014). Statistical analysis of yield trials by AMMI analysis
of genotype × environment interaction. Biometrical Letters. 51: 102–89. https://doi.org/10.2478/bile-2014-0007
-
Huang, X., Jang, S., Kim, B., Piao, Z., Redona. E., & Koh, H.J. (2021). Evaluating genotype × environment interactions of
yield traits and adaptability in rice cultivars grown under temperate, subtropical, and tropical environments. Agriculture
(Switzerland). 11(6). https://doi.org/10.3390/agriculture11060558
-
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang,
A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., & Han, B. (2010). Genome-wide association studies of 14
agronomic traits in rice landraces. Nature Genetics. 42(11): 961–967. https://doi.org/10.1038/ng.695
-
International Rice Research Institute (IRRI). (2018). Transforming rice-based agri-food systems in Asia. https://www.irri.org/
-
Jing, Q., Spiertz, J.H., Hengsdijk, H., Van Keulen, H., Cao, W., & Dai, T. (2010). Adaptation and performance of rice genotypes
in tropical and subtropical environments. NJAS - Wageningen Journal of Life Science. 57: 149–157.
https://doi.org/10.1016/j.njas.2010.04.002
-
Justo, S.B., H.G. Mkamilo, N.O. Danga, R. Bakari, F. Suleiman, R.A. Mwakapala, M.A. Batare, V.B. Bulegeya, S.S. Kashenge,
W.T. Suvi, S. Lee, K. Txd, T. Komboka, I. Txd, &Tari. (2024). Genotype and genotype × environment interaction effects
on the rice grain yield performance in different agro-ecologies in Tanzania. Journal of Plant Breeding and Crop Science.
16(2): 36–45. https://doi.org/10.5897/JPBCS2024.1038
-
Kanfany, G., M.A. Ayenan, Y.A. Zoclanclounon, T. Kane, M. Ndiaye, C. Diatta, J.P. Diatta, T. Gueye., & Fofana, A.T. (2021).
Analysis of genotype-environment interaction and yield stability of introduced upland rice in the Groundnut Basin
agroclimatic zone of Senegal. Advances in Agriculture. https://doi.org/10.1155/2021/4156167
-
Kawano, K., & Tanaka, A. (1968). Growth duration in relation to yield and nitrogen response in the rice plant. Japanese Journal
of Breeding. 18: 46–52. https://doi.org/10.1270/JSBBS1951.18.46
-
Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology. 59: 1–6.
https://doi.org/10.1007/s11103-005-2159-5
-
Kumar, B.M., A. Purushottam, P. Raghavendra, T. Vittal, K.N. Shubha., & Madhuri, R.D. (2020). Genotype × environment
interaction and stability for yield and its components in advanced breeding lines of red rice (Oryza sativa L.). Bangladesh
Journal of Botany. 49(3). https://doi.org/10.3329/bjb.v49i3.49328
-
Lata, S., Guleria, S.K., Dev, J., Katna, G., Sood, B.C., Kalia, V.K., & Singh, A. (2010). Stability analysis in maize (Zea mays
L.) hybrids across locations. Electronics Journal of Plant Breeding. 1: 239–243.
-
Lee, S.Y., Lee, H., Lee, C., Ha, S., Park, H., Lee, S., Kwon, Y., Jeung, J., & Mo, Y. (2023). Multi-environment trials and
stability analysis for yield-related traits of commercial rice cultivars. Agriculture.
https://doi.org/10.3390/agriculture13020256
-
Li, Z., Pinson, S.R., Stansel, J.W., & Paterson, A.H. (1998). Genetic dissection of the source-sink relationship affecting
fecundity and yield in rice (Oryza sativa L.). Mol. Breed. 4: 419–426. https://doi.org/10.1023/A:1009608128785
-
Liu, K., Zhang, K., Zhang, Y., Cui, J., Li, Z., Huang, J., Li, S., Zhang, J., Deng, S., Zhang, Y., Huang, J., Ren, L., Chu, Y.,
Zhao, H., & Chen, H. (2024). Optimizing the Total Spikelets Increased Grain Yield in Rice. Agronomy, 14(1), 152.
https://doi.org/10.3390/agronomy14010152
-
Lobell, D.B., Cassman, K.G., & Field, C.B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review
of Environmental Resource. 34: 179–204. https://doi.org/10.1146/annurev.environ.041008.093740
-
Lu, Y., Chuan, M., Wang, H., Chen, R., Tao, T., Zhou, Y., Xu, Y., Li, P., Yao, Y., Xu, C., & Yang, Z. (2022). Genetic and
molecular factors in determining grain number per panicle of rice. Frontier Plant Science. 13: 964246.
https://doi.org/10.3389/fpls.2022.964246
-
Maclean, J.L., Dawe, D.C., Hardy, B., & Hettel, G.P. (2013). Rice almanac: Source book for one of the most important
economic activities on earth. International Rice Research Institute. https://books.irri.org/9789712203008_content.pdf
-
Malosetti, M., Ribaut, J.M., & Van Eeuwijk, F.A., (2013). The statistical analysis of multi-environment data: Modeling
genotype-by-environment interaction and its genetic basis. Frontiers in Physiology. 4(MAR): 1–17.
https://doi.org/10.3389/fphys.2013.00044
-
Mohammadi, R., & Amri, A. (2012). Genotype × environment interaction and genetic improvement for yield and yield stability
of rainfed durum wheat in Iran. Euphytica. 192: 227–249. https://doi.org/10.1007/s10681-012-0839-1
-
Mohammadi, R., Jafarzadeh, J., Poursiahbidi, M.M., Hatamzadeh, H., & Amri, A. (2023). Genotype-by-environment
interaction and stability analysis for grain yield in durum wheat using GGE biplot and genotypic and environmental
covariates. Agricultural Research. 12: 364–374. https://doi.org/10.1007/s40003-023-00661-y
-
Moumeni, A., Mohaddesi, A., Amo-oughli-Tabari, M., Tavassoli-Larijani, F., & Khosravi,V. (2018). Stability analysis and
genotype × environment interaction for grain yield of rice (Oryza sativa L.) promising breeding lines. Iranian Journal of
Crop Science. 20: 329–344.
-
Nafisah, Z., Satoto, J., Jamil, A., & Sasmita, P. (2020). Genotype by environment interaction for grain yield of salt tolerance
rice genotypes in coastal saline area. Penelitian Pertanian Tanaman Pangan Journal. 4(1): 9–16.
https://dx.doi.org/10.21082/jpptp.v4n1.2020.p9-16
-
Nataraj, V., Bhartiya, A., Singh, C.P., Devi, H.N., Deshmukh, M.P., Verghese, P., Singh, K., Mehtre, S.P., Kumari, V.,
Maranna, S., Kumawat, G., Ratnaparkhe, M.B., Satpute, G.K., Rajesh, V., Chandra, S., Ramteke, R., Khandekar, N., &
Gupta, S. (2021). WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean.
Agronomy Journal. https://doi.org/10.1002/agj2.20750
-
Nishad, A., Mishra, A.N., Chaudhari, R., Aryan, R.K., & Katiyar, P. (2018). Effect of temperature on growth and yield of rice
(Oryza sativa L.) cultivars. International Journal of Chemical Studies. 6(5): 1381–1383.
https://www.researchgate.net/publication/330440940
-
Olivoto, T., & Lúcio, A.D.C. (2020). metan: An R package for multi-environment trial analysis. Methods in Ecology and
Evolution. 11(6): 783–789. https://doi.org/10.1111/2041-210X.13384
-
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q., & Jost, E. (2019). Mean performance and
stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal. 111(6):
2949–2960. https://doi.org/10.2134/agronj2019.03.0220
-
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B.G., & Diel, M.I. (2019). Mean performance and stability in multienvironment trials II: Selection based on multiple traits. Agronomy Journal. 111(6): 2961–2969.
https://doi.org/10.2134/agronj2019.03.0221
-
Pallavi, M., Shanthi, P., Reddy, V.L., Kumar, A.N., & Maruthi, P. B. (2024). Selection index for enhanced yield in rice
genotypes. Oryza-An International Journal of Rice. https://doi.org/10.35709/ory.2024.61.2.10
-
Parida, A.K., Sekhar, S., Panda, B.B., Sahu, G., & Shaw, B.P. (2022). Effect of panicle morphology on grain filling and rice
yield: Genetic control and molecular regulation. Frontier Genetics. 13: 876198. https://doi.org/10.3389/fgene.2022.876198
-
Poli, Y., Balakrishnan, D., Desiraju, S., Panigrahy, M., Voleti, S.R., Mangrauthia, S.K., & Neelamraju, S. (2018).
Genotype × environment interactions of Nagina22 rice mutants for yield traits under low phosphorus, water-limited, and
normal irrigated conditions. Scientific Reports. 8: 33812. https://doi.org/10.1038/s41598-018-33812-1
-
Ponsiva, S.T., Senthilkumar, N., Vanitha, J., Anandan, A., Satheeskumar, K., Mahendran, R., & Thirugnanakumar, S. (2024).
Detection of superior rice genotypes and yield stability using AMMI and MTSI models. Electronic Journal of Plant
Breeding. 15(2). https://doi.org/10.37992/2024.1502.057
-
Pradhan, P., Das, B., Kumar, D., Phani, V., & Kundu, S. (2024). Deciphering rice genotypes under submergence stress and
optimum condition for yield stability analysis. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.70005
-
Prakash, S., Srivastava, K.K., & Yadav, R.R. (2019). Character association and path analysis of yield-contributing traits and
quality parameters in rice (Oryza sativa L.). International Journal of Chemical Studies. 7: 1264–1268.
-
Rabbi, S.M.H., Biswas, P., Rashid, E.S.M., Iftekharuddaula, K.M., Rahman, N.M.F., Rahman, M.S., Sarkar, M.A.R., Mamun,
M.A.A., Salam, M.U., & Kabir, M.S. (2021). Increasing rice yield through targeting genetic potentials by rice types.
Bangladesh Rice Journal. 24(2): 67–82. https://doi.org/10.3329/brj.v24i2.53449
-
Rang, Z., Jagadish, S.V., Zhou, Q., Craufurd, P., & Heuer, S. (2011). Effect of high temperature and water stress on pollen
germination and spikelet fertility in rice. Environmental and Experimental Botany. 70: 58–65.
https://doi.org/10.1016/j.envexpbot.2010.08.009
-
Rani, G.B., Ahmed, L., Rani, A., & Rao, S. (2018). Breeding strategies for lodging resistance in rice. International Journal of
Bio-resources and Stress Management. 8(6): 895–903. https://doi.org/10.23910/IJBSM/2017.8.6.1793a
-
Sadimantara, G.R., Muhidin, & Nuraida, W.O. (2023). Evaluation of yield attributing characters and grain yield in some
promising red rice lines (Oryza sativa L.) grown in the lowland conditions. IOP Conference Series Earth and
Environmental Science. 1241. https://doi.org/10.1088/1755-1315/1241/1/012038
-
Sampaio Filho, J.S., Olivoto, T., Campos, M.D., & de Oliveira, E.J. (2023). Multi-trait selection in multi-environments for
performance and stability in cassava genotypes. Frontier Plant Science. 14. https://doi.org/10.3389/fpls.2023.1282221
-
Saran, D., Gauraha, D., Sao, A., Sandilya, V.K., & Kumar, R. (2023). Correlation and path coefficient analysis for yield and
yield-attributing traits in rice (Oryza sativa L.). International Journal of Plant & Soil Science. 35(18): 94–101.
https://doi.org/10.9734/ijpss/2023/v35i183271
-
Sasaki, K., Fujita, D., Koide, Y., Lumanglas, P.D., Gannaban, R.B., Tagle, A.G., Obara, M., Fukuta, Y., Kobayashi, N., &
Ishimaru, T. (2017). Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant-type rice and
evaluation of a near-isogenic line for grain productivity. Journal of Experimental Botany. 68(11): 2693–2702.
https://doi.org/10.1093/jxb/erx128
-
Saud, S., Wang, D., Fahad, S., Alharby, H.F., Bamagoos, A.A., Mjrashi, A., Alabdallah, N.M., Alzahrani, S.S., AbdElgawad,
H., Adnan, M., Sayyed, R.Z., Ali, S., & Hassan, S. (2022). Comprehensive impacts of climate change on rice production
and adaptive strategies in China. Frontier Microbiology. 13. https://doi.org/10.3389/fmicb.2022.926059
-
Shahidullah, S.M., Hanafi, M.M., Ashrafuzzaman, M., Uddin, M.K., & Razi-Ismail, M. (2010). Analysis of grain density and
yield characters in aromatic rice genotypes. Agrociencia. 44: 325-337.
-
Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi. A. (2020). Stability of some rice genotypes based on WAASB and MTSI
indices. Iranian Journal of Genetics and Plant Breeding. 9(2): 1-11. https://doi.org/10.30479/ijgpb.2021.14432.1283
-
Sheehy, J. E., Dionora, M. J. A., & Mitchell, P. L. (2001). Spikelet numbers, sink size and potential yield in rice. Field Crops
Research, 71(2), 77–85. https://doi.org/10.1016/S0378-4290(01)00145-9
-
Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.)
genotypes using AMMI, BLUP, GGE biplot, and MTSI. Scientific Reports. 13: 10019. https://doi.org/10.1038/s41598-
023-37217-7
-
Tiwari, D.N., Pandey, M.P., Manandhar, H.K., & Bhusal, T.N. (2024). Genotype by Environment Interaction Using AMMI,
GGE Biplot and Multivariate Analysis of Nepalese Aromatic Rice Landraces. Agronomy Journal of Nepal. 8(1): 34-51.
https://doi.org/10.3126/ajn.v8i1.70767
-
Tiwari, V., Saxena, R.R., Singh, D., & Gupta, S. (2018). Genotype and environment interaction analysis by AMMI model and
GGE bi plot. Journal of Pharmcognosy and Phytochemistry. 7(4): 887-891.
-
Unnati, P., Pathik, P., Lalit, M., &. Bilwal, B.B. (2017). Stability analysis for grain yield and its attributing traits of rice across
locations. International Journal of Current Microbiology and Applied Science. 6: 2102-2111.
https://doi.org/10.20546/IJCMAS.2017.611.248
-
Vergara, B.S., Tanaka, A., Lilis, R., & Puranabhavung, S. 1966. Relationship between growth duration and grain yield of rice
plants. Soil Science and Plant Nutrition. 12: 31-39. https://doi.org/10.1080/00380768.1966.10431180
-
Wang, Y., He, W., Yan, C., Gao, H., Cui, J., & Liu, Q. (2024). Environmental impact of various rice cultivation methods in
Northeast China through life cycle assessment. Agronomy. 14(2): 267. https://doi.org/10.3390/agronomy14020267
-
Wang, Y., Wang, X., Zhai, L., Zafar, S., Shen, C., Zhu, S., Chen, K., & Xu. J. (2023). A novel effective panicle number per
plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. The Crop Journal.
https://doi.org/10.1016/j.cj.2023.11.003
-
Yan, W., & Kang. M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.).
CRC Press. https://doi.org/10.1201/9781420040371
-
Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science. 47(2): 643–655. https://doi.org/10.2135/cropsci2006.06.0374
-
Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., Ito, A., Koketsu, E., Kawamura, M., Kotake, K., Yoshida,
S., Endo, M., Tamiya, G., Kitano, H., Ueguchi-Tanaka, M., Hirano, K., & Matsuoka. M. (2019). GWAS with principal
component analysis identifies a gene comprehensively controlling rice architecture. Proceedings of the National Academy
of Sciences. USA 116: 21262-21267. https://doi.org/10.1073/pnas.1904964116
-
Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., Chen, S., Peng, H., Nardino, M., & Jiang, X. (2022). Multi-trait selection
for mean performance and stability of maize hybrids in mega-environments delineated using enviro-typing techniques.
Frontier Plant Science. 13. https://doi.org/10.3389/fpls.2022.1030521
-
Zuffo, A.M., Steiner, F., Aguilera, J.G., Teodoro, P.E., Teodoro, L.P.R., & Busch, A. (2020). Multi-trait stability index: A tool
for simultaneous selection of soybean genotypes in drought and saline stress. Journal of Agronomy and Crop Science.
206(6): 815–822. https://doi.org/10.1111/jac.12409