Research Article
BibTex RIS Cite

Effect of Leaf Damage on Fat and Fatty Acids of Peanut (Arachis hypogaea L.)

Year 2025, Volume: 30 Issue: 2, 300 - 309, 28.12.2025
https://doi.org/10.17557/tjfc.1682760

Abstract

Abiotic stresses triggered by climate change often damage peanut leaves (Arachis hypogaea L.) during developmental stages, and the effects of this damage on fat and fatty acids are unclear. Thus, this study examined the impact of leaf damage rates on the different growth stages of peanut (Arachis hypogaea L.) grown in the Eastern Mediterranean region of Osmaniye, Türkiye, during the main crop season. The experiment was conducted in a split-split plot design with three replications during 2020 and 2021 vegetation periods. Different yield and quality criteria were studied by placing independent variables, such as varieties (NC 7 and Halisbey) on main plots, growth stages (R1, R2, and R3) on sub-plots, and leaf damage levels (control, 25%, 50%, and 75%) on sub-sub-plots. The highest oil content was obtained in the Halisbey (48.30%±0.32) variety at the R3 stage (48.70%±0.32) and at 75% leaf damage (48.27%±0.21). The highest oleic acid was found in NC 7 variety (52.20%±0.33), at the R3 stage (51.19%±0.61), and %50 leaf damage (50.92%±0.72). The order of leaf damage treatments in terms of linoleic acid was as follows: in control (49.95%±0.31), in 75% leaf damage (50.37±0.60%), in 25% leaf damage (50.57%±0.54), and in 50% leaf damage (50.92%±0.72). As a consequence, it has been determined that the selection of varieties and integrated control against abiotic and biotic stresses are essential to reduce the effects of leaf damage on peanut fat and fatty acids.

Supporting Institution

Hatay Mustafa Kemal University Cordinatorship of Scientific Research Projects

Project Number

19.M.045

Thanks

A portion of the information offered in this research article was drawn from the first author's PhD dissertation. We sincerely appreciate Hatay Mustafa Kemal University Cordinatorship of Scientific Research Projects for funding this research (Project number: 19.M.045) and Osmaniye Oil Seed Research Institute for supplying the genotypes used in this study.

References

  • Adomou, M., Prasad, P. V. V., Boote, K. J., & Detongnon, J. (2005). Disease assessment methods and their use in simulating growth and yield of peanut crops affected by leafspot disease. Annals of Applied Biology, 146(4), 469-479. https://doi.org/10.1111/j.1744-7348.2005.040122.x
  • Akcura, S., Ismail, T. A. S., Kokten, K., Kaplan, M., & Bengu, A. S. (2021). Effects of irrigation intervals and irrigation levels on oil content and fatty acid composition of peanut cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12224-12224. https://doi.org/10.15835/nbha49212224
  • Anco, D. J., Thomas, J. S., Jordan, D. L., Shew, B. B., Monfort, W. S., Mehl, H. L., & Campbell, H. L. (2020). Peanut yield loss in the presence of defoliation caused by late or early leaf spot. Plant Disease, 104(5), 1390-1399. https://doi.org/10.1094/PDIS-11-19-2286-RE
  • Andersen, P. C., & Gorbet, D. W. (2002). Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. Journal of Agricultural and Food Chemistry, 50(5), 1298-1305.
  • Anonymous. (2025). Plant pests agricultural control technical instructions https://www.tarimorman.gov.tr/TAGEM (Accessed April 2, 2025).
  • Arioglu, H. H. (2014). The Oil Seed Crops Growing and Breeding. The Publication of University of Cukurova, Faculty of Agriculture, Adana, Turkey.
  • Arioglu, H. H., Bakal, H., Gulluoglu, L., Kurt, C., & Onat, B. (2016). The determination of some important agronomical and quality properties of peanut varieties in main crop conditions. Biotech Studies, 25(2), 24-29.
  • Asibuo, J. Y., Akromah, R., Safo-Kantanka, O., Adu-Dapaah, H. K., Ohemeng-Dapaah, S., & Agyeman, A. (2008). Chemical composition of groundnut, Arachis hypogaea (L) landraces. African Journal of Biotechnology, 7(13), 2203- 2208.
  • Asik, F. F., & Asik, B.B. (2023). Macro and micro element composition of some peanut (Arachis hypogaea L.) varieties in Turkey. Journal of Agricultural Sciences, 29(1), 38-46. https://doi.org/10.15832/ankutbd.962154
  • Asik, F. F., Yildiz, R., & Arioglu, H. H. (2018). The determination of new peanut varieties for Osmaniye Region and their important agronomic and quality characteristics. Journal of Agriculture and Nature, 21(6), 825-836. https://doi. org/10.18016/ksutarimdoga.vi452842.
  • Bera, S. K., Kamdar, J. H., Kasundra, S. V., Dash, P., Maurya, A. K., Jasani, M. D., & Varshney, R. K. (2018). Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica, 214, 1-15. https://doi.org/10.1007/s10681-018-2241-0
  • Bodoira, R., Cittadini, M. C., Velez, A., Rossi, Y., Montenegro, M., Martínez, M., & Maestri, D. (2022). An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food chemistry, 381, 132250. https://doi.org/10.1016/j.foodchem.2022.132250
  • Candela, F. M., Giordano, W. F., Quiroga, P. L., Escobar, F. M., Mañas, F., Roma, D. A., & Sabini, M. C. (2020). Evaluation of cellular safety and the chemical composition of the peanut (Arachis hypogaea L.) ethanolic extracts. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05119
  • Chowdhury, F. N., Hossain, D., Hosen, M., & Rahman, S. (2015). Comparative study on chemical composition of five varieties of groundnut (Arachis hypogaea). World Journal of Agricultural Science, 11(5), 247-254. https://doi.org/10.5829/idosi.wjas.2015.11.5.1864
  • Deshmukh, D. B., Marathi, B., Sudini, H. K., Variath, M. T., Chaudhari, S., Manohar, S. S., & Pasupuleti, J. (2020). Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Frontiers in Genetics, 11, 487438. https://doi.org/10.3389/fgene.2020.00514
  • Dwivedi, S. L., Nigam, S. N., Subrahmanyam, P., Jambunathan, R., Nagabhushanam, G. V., Reddy, P. M., & McDonald, D. (1993). Effect of foliar diseases control by chlorothalonil on pod yield and quality characteristics of confectionery groundnuts (Arachis hypogaea L). Journal of the Science of Food and Agriculture, 63(3), 265-271.
  • Ergun, Z., & Zarifikhosroshahi, M. (2020). A comparative analysis of oil content and fatty acid in different varieties of Arachis hypogaea L. from Turkey. International Journal of Agriculture Forestry and Life Sciences, 4(1), 42-47.
  • Favero, A. P., Moraes, S. A. D., Garcia, A. A. F., Valls, J. F. M., & Vello, N. A. (2009). Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. Scientia Agricola, 66, 110-117. https://doi.org/10.1590/S0103-90162009000100015
  • Gali, S., Reddy, D. L., Rajesh, A. P., John, K., Sudhakar, P., & Rao, V. S. (2021). Genetic variability studies in large seeded peanut (Arachis hypogaea L.). The Pharma Innovation Journal, 10(9), 2065-2069.
  • Golukcu, M., Toker, R., Tokgoz, H., & Kadiroglu, A. (2016). Oil content and fatty acid composition of some peanut (Arachis hypogaea) cultivars grown in Antalya conditions. Gıda, 41(1), 31-36.
  • Gulluoglu, L., Bakal, H., Onat, B., El-Sabagh, A., & Arioglu, H. (2016). Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. Journal of Experimental Biology And Agriculture Sciences, 4(5), 465-571. http://dx.doi.org/10.18006/2016.4(5S).564.571
  • Hammons, R. O., Herman, D., & Stalker, H. T. (2016). Origin and Early History of the Peanut. In Peanuts. USA: American Oil Chemists' Society Press.
  • Isler, N., & Gozuyesil, R. (2016). Determination of problems related to peanut cultivation in Osmaniye province. Biotech Studies, 25(2), 36-41.
  • Janila, P., Pandey, M. K., Shasidhar, Y., Variath, M. T., Sriswathi, M., Khera, P., & Varshney, R. K. (2016). Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science, 242, 203-213. https://doi.org/10.1016/j.plantsci.2015.08.013
  • Jelic, D., Megyeri, O. A., Malečić, B., Belušić Vozila, A., Strelec Mahović, N., & Telišman Prtenjak, M. (2020). Hail climatology along the northeastern Adriatic. Journal of Geophysical Research: Atmospheres, 125(23), e2020JD032749. https://doi.org/10.1029/2020JD032749
  • Kachroo, A., Shanklin, J., Whittle, E., Lapchyk, L., Hildebrand, D., & Kachroo, P. (2007). The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Molecular Biology, 63, 257-271. https://doi.org/10.1007/s11103-006-9086-y
  • Kahraman, A., Tilev-Tanriover, S., Kadioglu, M., Schultz, D.M., & Markowski, P. M. (2016). Severe hail climatology of Turkey. Monthly Weather Review, 144(1), 337-346. https://doi.org/10.1175/MWR-D-15-0337.1
  • Kamdar, J. H., Jasani, M. D., Ajay, B. C., Rani, K., Manivannan, N., Vasanthi, R. P., & Bera, S. K. (2021). Fatty acid desaturase-2 (ahFAD2) mutant alleles in peanut (Arachis hypogaea L.) pre-breeding lines: an insight into the source, features, discourse, and selection of novel pre-breeding lines. Genetic Resources and Crop Evolution, 68, 529-549. https://doi.org/10.1007/s10722-020-00999-0
  • Kaya, M., & Kovancı, B. (2000). Bursa İlinde Yeşilkurt, Helicoverpa armigera (Hübn.) (Lepidoptera: Noctuidae)'nın Biyolojisi Üzerinde Araştırmalar. Yuzuncu Yil University Journal of Agricultural Sciences, 10(1), 37-43.
  • Kopp, J., Schröer, K., Schwierz, C., Hering, A., Germann, U., & Martius, O. (2023). The summer 2021 Switzerland hailstorms: weather situation, major impacts and unique observational data. Weather, 78(7), 184-191. https://doi.org/10.1002/wea.4306
  • Lopez, Y., Smith, O. D., Senseman, S. A., & Rooney, W. L. (2001). Genetic factors influencing high oleic acid content in Spanish market‐type peanut cultivars. Crop Science, 41(1), 51-56. https://doi.org/10.2135/cropsci2001.41151x
  • Nadaroglu, Y., & Simsek, O. (2012). Hail damage in agriculture and ways of protection. https://www.mgm.gov.tr/FILES/genel/makale/doluzarari.pdf (Accessed April 2, 2025)
  • Sahin, C. B., Yilmaz, M., & Isler, N. (2022). Determination of oil quality and fatty acid compositions of some peanut (Arachis hypogaea L.) genotypes grown in Mediterranean Region. Turkish Journal of Field Crops, 27(1), 142-148. https://doi.org/10.17557/tjfc.1095649
  • Salamatullah, A. M., Alkaltham, M. S., Ozcan, M. M., Uslu, N., & Hayat, K. (2021). Effect of maturing stages on bioactive properties, fatty acid compositions, and phenolic compounds of peanut (Arachis hypogaea L.) kernels harvested at different harvest times. Journal of Oleo Science, 70(4), 471-478. https://doi.org/10.5650/jos.ess20320
  • Sarkaya Ahat, C. (2015). The Effects of Sequence Application of Pesticides on Degradation Kinetics for Tomatoes and Pepper Fruits. MSc, Adnan Menderes University, Aydın, Turkey.
  • Shibli, S., Siddique, F., Raza, S., Ahsan, Z., & Raza, I. (2019). Chemical composition and sensory analysis of peanut butter from indigenous peanut cultivars of Pakistan. Pakistan Journal of Agricultural Research, 32(1), 159-169. http://dx.doi.org/10.17582/journal.pjar/2019/32.1.159.169
  • Sogut, T., Ozturk, F., & Kizil, S. (2016). Effect of sowing time on peanut (Arachis hypogaea L.) cultivars: II. Fatty acid composition. Agriculture and Agricultural Science Procedia, 10, 76-82. https://doi.org/10.1016/j.aaspro.2016.09.018
  • Reddy, P. P. (2015). Impacts of Climate Change on Agriculture. Climate Resilient Agriculture for Ensuring Food Security. New Delhi: Springer India.
  • Pandey, M. K., Monyo, E., Ozias-Akins, P., Liang, X., Guimarães, P., Nigam, S. N., & Varshney, R. K. (2012). Advances in Arachis genomics for peanut improvement. Biotechnology Advances, 30(3), 639-651. https://doi.org/10.1016/j.biotechadv.2011.11.001
  • Tene, T.M., Eker, T., Canci, H., Babacan, U, Cengiz, M.F. & Toker, C. (2025). Star of biochemical traits of heat-tolerant and heat-sensitive Phaseolus genotypes in coping with heat stress. Plant Growth Regulation, 1-18. https://doi.org/10.1007/s10725-025-01340-4.
  • Toker, C & Yadav, S.S. (2010). Legumes Cultivars for Stress Environments. In: S.S. Yadav et al. (eds.), Climate Change and Management of Cool Season Grain Legume Crops, pp:351-376. https://doi.org/10.1007/978-90-481-3709-1_18,
  • Tillman, B. L., & Stalker, H. T. (2009). Peanut. In J. Vollmann, J., & I. Rajcan (Eds.), Oil Crops (pp. 287-315). Springer New York.
  • Xue, H. Q., Upchurch, R. G., & Kwanyuen, P. (2006). Ergosterol as a Quantifiable Biomass Marker for Diaporthe haseolorum and Cercospora kikuchi. Plant disease, 90(11), 1395-1398. https://doi.org/10.1094/PD-90-1395
  • Wilson, R. A., Calvo, A. M., Chang, P. K., & Keller, N. P. (2004). Characterization of the Aspergillus parasiticus Δ12- desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction. Microbiology, 150(9), 2881-2888. https://doi.org/10.1099/mic.0.27207-0
  • Ucak, A. B., Cil, A., Tuysuz, M. D., Sahin, H., & Sarli, E. (2017). Determination of water stress tolerant peanut (Arachis hypogaea) lines. Journal of Agriculture and Nature 20, 246-251.
  • Variath, M. T., & Janila, P. (2017). Economic and academic importance of peanut. In: R. Varshney, M. Pandey, & N. Puppala. (Eds.), The Peanut Genome (pp. 7-26). Springer Cham.
  • Yasli, S., Isler, N., & Sahin, C. B. (2020). The effect of single and twin planting patterns on yield and important agricultural characteristics of main cropped peanut under Diyarbakir conditions. Journal of Agriculture and Nature, 23(1), 91-98. https://doi.org/10.18016/ksutarimdoga.vi.552168
  • Yilmaz, M., & Jordan, D. L. (2022). Effect of plant density on yield and quality of peanut (Arachis hypogaea L.) cultivars. Turkish Journal of Field Crops, 27(2), 217-223. https://doi.org/10.17557/tjfc.1148572
  • Yol, E., Ustun, R., Golukcu, M., & Uzun, B. (2017). Oil content, oil yield and fatty acid profile of groundnut germplasm in mediterranean climates. Journal of the American Oil Chemists' Society, 94(6), 787-804. https://doi.org/10.1007/s11746-017-2981-3
  • Yol, E., & Uzun, B. (2018). Influences of genotype and location interactions on oil, fatty acids and agronomical properties of groundnuts. Grasas Y Aceites, 69(4), e276-e276. https://doi.org/10.3989/gya.0109181
  • Yu, H., Liu, H., Wang, Q., & Van Ruth, S. (2020). Evaluation of portable and benchtop NIR for classification of high oleic acid peanuts and fatty acid quantitation. Lwt, 128, 109398. https://doi.org/10.1016/j.lwt.2020.109398
There are 51 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section Research Article
Authors

Mustafa Yılmaz 0000-0002-1816-0729

Cenk Burak Şahin 0000-0001-6270-8184

Necmi İşler 0000-0001-5877-7830

Project Number 19.M.045
Submission Date April 25, 2025
Acceptance Date November 11, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Yılmaz, M., Şahin, C. B., & İşler, N. (2025). Effect of Leaf Damage on Fat and Fatty Acids of Peanut (Arachis hypogaea L.). Turkish Journal Of Field Crops, 30(2), 300-309. https://doi.org/10.17557/tjfc.1682760

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture, Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org