Association Mapping of Heat Tolerance SNPs in Upland Cotton During Vegetative Growth
Year 2025,
Volume: 30 Issue: 2, 339 - 351, 28.12.2025
Yusuf Güzel Demiray
,
Remzi Ekinci
,
Adem Bardak
Abstract
This study aimed to identify genomic regions associated with high-temperature stress tolerance in upland cotton, particularly during the vegetative period of this crop, which is increasingly affected by climate change. Understanding the genetic basis of thermotolerance is essential for improving resilience and sustaining yield under heat stress conditions. A total of 94 upland cotton genotypes were subjected to high-temperature stress in a low tunnel environment for four consecutive days during peak flowering. Physiological parameters, including relative cell injury (RCI), leaf temperature (LT), and SPAD chlorophyll values, were measured before and after the stress treatment to assess the genotypic response. Genotyping by sequencing (GBS) was used to detect single nucleotide polymorphisms (SNPs), and 6670 high-quality markers (MAF < 0.05) were retained for association mapping. Association analyses were conducted using general and mixed linear model (GLM-MLM) approaches. SNP markers associated with heat tolerance were identified using GLM and MLM models at significance levels of p < 0.0001– 0.001 with a –Log10(P) threshold ≥ 2.5, and MLM results were validated using false discovery rate (FDR) correction. Four SNPs on chromosomes A07, A10, D03, and D09 (SNP1680, SNP2537, SNP4374, SNP6415) were linked to RCI; four SNPs on D05, D07, A10, and D08 (SNP5029, SNP5643, SNP2616, SNP5915) were associated with LT; and two SNPs on D12 and A08 (SNP7428, SNP1910) were related to SPAD chlorophyll content. These markers correspond to genomic regions encoding enzymes, proteins, and genes implicated in high-temperature stress responses in cotton (Gossypium hirsutum L.).
Ethical Statement
The authors have no conflicts of interest to declare.
Supporting Institution
GAP International Agricultural Research and Training Center and Dicle University
Project Number
TAGEM/TBAD/B/22/A7/P5/5139
Thanks
This study presented here was derived from Yusuf Güzel DEMİRAY's PhD, " Determination of DNA markers associated with tolerance/resistance to high temperature stress in cotton (Gossypium hirsutum L.)" at the Department of Field Crops, Institute of Science and Technology, Dicle University. The study was funded by the General Directorate of Agricultural Research and Policies (project number TAGEM/TBAD/A/20/A7/P5/1536) and Dicle University Scientific Research Projects Coordination Unit (project number ZİRAAT.20.007). I would like to express my gratitude to the project financing institutions and my valuable advisors, Assoc. Prof. Dr. Remzi Ekinci and Assoc. Prof. Dr. Adem Bardak.
References
-
Abdurakhmonov, I. Y., Saha, S., Jenkins, J. N., Buriev, Z. T., Shermatov, S. E., Scheffler, B. E., Pepper, A. E., Yu, J. Z.,
Kohel, R. J., & Abdukarimov, A. (2009). Linkage disequilibrium-based association mapping of fiber quality traits in
G. hirsutum L. variety germplasm. Genetica, 136(3), 401-417. https://doi.org/10.1007/s10709-008-9337-8.
-
Ahmad A, Ilyas MZ, Aslam Z, Roman M, Ali A, Naeem S, Nazar M, & Rehman, S.U. (2020). Physiological screening of
cotton (Gossypium hirsutum L.) genotypes against drought tolerance. Pure ApplBiol 9:140-147.
http://dx.doi.org/10.19045/bspab.2020.90017.
-
Akman, Y., Ketenoglu, O., Kurt, L., & Yigit, N. (2012). Plant Ecology-Ecological Synthesis. Palme Publishing, Ankara p
322.
Anonymous, (2023). National Center for Biotechnology Information.
-
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome,
(Accessed July 10, 2023)
-
Bardak, A., Celik, S., Erdogan, O., Ekinci, R., & Dumlupinar, Z. (2021). Association Mapping of Verticillium Wilt Disease
in a Worldwide Collection of Cotton (Gossypium hirsutum L.). Plants (Basel, Switzerland), 10(2), 306.
https://doi.org/10.3390/plants10020306.
-
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B, Methodological 57(1): 289-300,
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
-
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for
association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635,
https://doi.org/10.1093/bioinformatics/btm308.
-
Chen, X. Y., & Kim, J. Y. (2009). Callose synthesis in higher plants. Plant signaling & behavior, 4(6), 489-492,
https://doi.org/10.4161/psb.4.6.8359.
-
Chen, J., Yu, F., Liu, Y., Du, C., Li, X., Zhu, S., ... & Luan, S. (2016). FERONIA interacts with ABI2-type phosphatases
to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proceedings of the National
Academy of Sciences, 113(37), E5519-E5527.
-
Demiray, Y. G. (2024). Determination of DNA markers associated with tolerance/resistance to high temperature stress in
cotton (Gossypium hirsutum L.) (Unpublished doctoral dissertation, 237 pages). Dicle University, Diyarbakır, Turkey.
-
Demiray, Y. G., Ekinci, R., & Bardak, A. (2023). Investigation of Vegetative High Temperature Tolerance of Some Cotton
(Gossypium hirsutum L.) Varieties. Turkish Journal of Nature and Science, 12(2), 111-118,
https://doi.org/10.46810/tdfd.1287892.
-
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust,
simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS One, 6(5), e19379.
https://doi.org/10.1371/journal.pone.0019379
-
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software
STRUCTURE: a simulation study. Molecular ecology, 14(8), 2611- 2620. https://doi.org/10.1111/j.1365-
294X.2005.02553.x.
-
Feng, W., Kita, D., Peaucelle, A., Cartwright, H. N., Doan, V., Duan, Q., ... & Dinneny, J. R. (2018). The FERONIA
receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology, 28(5), 666-
675.
-
Gachomo, E. W., Jimenez-Lopez, J. C., Smith, S. R., Cooksey, A. B., Oghoghomeh, O. M., Johnson, N., ... & Kotchoni,
S. O. (2013). The cell morphogenesis ANGUSTIFOLIA (AN) gene, a plant homolog of CtBP/BARS, is involved in
abiotic and biotic stress response in higher plants. BMC Plant Biology, 13(1), 79. https://doi.org/10.1186/1471-2229-
13-79.
-
Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., & Sussman, M. R. (2014). A peptide hormone and its receptor protein
kinase regulate plant cell expansion. Science, 343(6169), 408-411.
-
ICAC, (2022). International Cotton Advisory Committee, Washington DC, USA, Cotton data book. DATABOOK-2022-
ss.pdf.pdf.pdf (icac.org), (Accessed August 8, 2024)
-
IPCC, (2018). Intergovernmental Panel on Climate Change 2018. Synthesis report. Version ingles. Page Climate Change
2018: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. (Accessed June 26, 2023)
-
IPPC, (2007). Intergovernmental Panel on Climate Change (Climate Change 2007: Working Group I: The Physical science
basis (online), http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_repor
t_wg1_report_the_phyyssıcal_science_basis.htm, (Accessed June 26, 2023).
-
Karim, A. M. A., Sarker, U. K., Hasan, A. K., Islam, N., & Uddin, M. R. (2022). Physiological and biochemical responses
of chickpea genotypes to different moisture stress in Bangladesh. Turkish Journal of Field Crops, 27(1), 1-9.
-
Khan, N., Ahmad, I., & Azhar, M. T. (2017). Genetic variation in relative cell injury for breeding upland cotton under high
temperature stress. Turkish Journal of Field Crops, 22(1), 152-159.
-
Liao, H., Tang, R., Zhang, X., Luan, S., & Yu, F. (2017). FERONIA Receptor Kinase at the Crossroads of Hormone
Signaling and Stress Responses. Plant & cell physiology, 58(7), 1143-1150. https://doi.org/10.1093/pcp/pcx048.
-
Luo, X. M., Lin, W. H., Zhu, S., Zhu, J. Y., Sun, Y., Fan, X. Y., Cheng, M., Hao, Y., Oh, E.,Tian, M., Liu, L., Zhang, M.,
Xie, Q., Chong, K., & Wang, Z. Y. (2010). Integration of light- and brassinosteroid-signaling pathways by a GATA
transcription factor in Arabidopsis. Developmental cell, 19(6), n872-883. https://doi.org/10.1016/j.devcel.2010.10.023.
-
Ma, Y., Min, L., Wang, J., Li, Y., Wu, Y., Hu, Q., ... & Zhang, X. (2021). A combination of genome‐wide and
transcriptome‐wide association studies reveals genetic elements leading to male sterility during high temperature stress
in cotton. New Phytologist, 231(1), 165-181. https://doi.org/10.1111/pbi.13597
-
Meng-wei, L., Yu-hua, H., Rong, L., Guan, L., Dong, W., Yi-shan, J., Xin, Y., Shu-xian, H., Chen-yu, W., Yu, M., Bei, L.,
Tao, Y., & Xu-xiao, Z., (2023). Construction of SNP genetic map based on targeted next-generation sequencing and
QTL mapping of vital agronomic traits in faba bean (Vicia faba L.), Journal of Integrative Agriculture, volume 22,
issue 9, pages 2648-2659, September 2023, https://doi.org/10.1016/j.jia.2023.01.003.
-
Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic
and biotic stresses and changes in the lignin content and composition in plants. Journal of integrative plant biology,
52(4), 360-376.
-
Poland, J. A., & Rife, T. W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5: 92-102.
https://doi.org/10.3835/plantgenome2012.05.0005.
-
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data.
Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945.
-
Rani, S., Baber, M., & Naqqash, T. (2022). Identification and genetic mapping of potential QTLs conferring heat tolerance
in cotton (Gossypium hirsutum L.) by using micro satellite marker’s approach. Agron. 2022; 12 (6): 1381.
-
Reyes, J. C., Muro-Pastor, M. I., & Florencio, F. J. (2004). The GATA family of transcription factors in Arabidopsis and
rice. Plant physiology, 134(4), 1718-1732. https://doi.org/10.1104/pp.103.037788.
-
Rikin, A., Waldman, M., Richmond, A. E. & Dovrat, A. (1975). Hormonal regulation of morphogenesis and cold resistance.
I. Modifications by abscisic acid and gibberellic acid in alfalfa (Medicago sativa L.) seedlings. Journal of Experimental
Botany, 26, 175- 183. https://doi.org/10.1093/jxb/26.2.175.
-
Ron, M., & Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistancelike gene family in tomato. The Plant cell, 16(6), 1604-1615. https://doi.org/10.1105/tpc.022475.
-
Salman, M., Zia, Z. U., Rana, I. A., Maqsood, R. H., Ahmad, S., Bakhsh, A., & Azhar, M. T. (2019). Genetic effects
conferring heat tolerance in upland cotton (Gossypium hirsutum L.). Journal of Cotton Research, 2, 1-8.
https://doi.org/10.1186/s42397-019-0025-2.
-
SAS. (2020). Version 9.3. SAS Institute Inc., Cary, NC, 1989-2020
-
Semizer-cumıng, D., Altan, F., Akdemır, H., Tosun, M., Gurel, A., & Tanyolac, B. (2015). QTL analysis of fiber color and
fiber quality in naturally green colored cotton (Gossypium hirsutum L.). Turkish Journal of Field Crops, 20(1), 49-58.
-
Shi, Y., Huang, K., Chen, J., Huda, M. N., Niu, J., Sun, Z., ... & Zhu, A. (2024). Genomic variation and candidate genes
dissect quality and yield traits in Boehmeria nivea (L.) Gaudich. Cellulose, 31(3), 1449-1465.
https://doi.org/10.21203/rs.3.rs-3012123/v1.
-
Sümer, F. Ö. (2023). The effects of different sowing times on the phenological characteristics and seed yield of the pea.
Turkish Journal of Field Crops, 28(2), 301-312.
-
Vanholme, R., Cesarino, I., Rataj, K., Xiao, Y., Sundin, L., Goeminne, G., Kim, H., Cross, J., Morreel, K., Araujo, P.,
Welsh, L., Haustraete, J., McClellan, C., Vanholme, B., Ralph, J., Simpson, G. G., Halpin, C., & Boerjan, W. (2013).
Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science (New York,
N.Y.), 341(6150), 1103-1106. https://doi.org/10.1126/science.1241602.
-
Wei, N., Tsuge, T., Serino, G., Dohmae, N., Takio, K., Matsui, M., & Deng, X. W. (1998). The COP9 complex is conserved
between plants and mammals and is related to the 26S proteasome regulatory complex. Current biology, 8(16), 919-
922. https://doi.org/10.1016/s0960-9822(07)00372-7.
-
Whitt, S. R., & Buckler, E. S. (2003). Using natural allelic diversity to evaluate gene function. Methods in molecular
biology (Clifton, N.J.), 236, 123–140. https://doi.org/10.1385/1-59259-413-1:123.
-
Yang, W., Pollard, M., Li-Beisson, Y., Beisson, F., Feig, M., & Ohlrogge, J. (2010). A distinct type of glycerol-3-phosphate
acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proceedings of the
National Academy of Sciences, 107(26), 12040-12045. https://doi.org/10.1073/pnas.0914149107.
-
Zhang, Q., Zhang, C., Pan, Z., Lin, H., Li, Z., Hou, X., Liu, J., Nie, X., & Wu, Y. (2023). "Genome- Wide Identification
and Analysis of the WNK Kinase Gene Family in Upland Cotton." Plants 12, no. 23: 4036.
https://doi.org/10.3390/plants12234036.
-
Zheng, X., Dai, X., Zhao, Y., Chen, Q., Lu, F., Yao, D., Yu, Q., Liu, X., Zhang, C., Gu, X., & Luo, M. (2007). Restructuring
of the dinucleotide-binding fold in an NADP(H) sensor protein. Proceedings of the National Academy of Sciences,
104(21), 8809-8814. https://doi.org/10.1073/pnas.0700480104.
-
Zirak-Qoturbulagh, M. A., Mehri, S., Soleimanzadeh, H., & Ansari, M. H. (2025). Co-Inoculation of Bradyrhizobium and
Arbuscular Mycorrhizal Fungus Alleviates the Effects of Drought Stress in Soybean (Glycine max L.). Turkish Journal
of Field Crops, 30(1), 235-248.
-
Ziska, L. H. & Bunce, J. A. (1997). Influence of increasing carbon dioxide concentration on the photosynthetic and growth
stimulation of selected C4 crops and weeds. Photosynthesis Research, 54.3: 199-208.
https://doi.org/10.1023/A:1005947802161.