Research Article
BibTex RIS Cite
Year 2016, , 254 - 260, 15.12.2016
https://doi.org/10.17557/tjfc.55137

Abstract

References

  • Altindal, D. and T. Karadogan. 2010. The effect of carbon sources on in vitro microtuberization of potato (Solanum tuberosum L.). Turk. J. Field Crops, 15(1): 7-11.
  • Aslam, A., A. Ali , N.H. Naveed, A. Saleem, J. Iqbal and A. Aslam. 2011. Effect of interaction of 6-benzyl aminopurine (BA) and sucrose for efficient microtuberization of two elite potato (Solanum tuberosum L.) cultivars, Desiree and Cardinal. Afr. J. Biotechnol. 10(59):12738-12744.
  • Avigad, C. 1982. Sucrose and other dissaccharides. In: Storage Carbohydrates in Vascular Plants, ed. Lewis D.H., 53-73, Cambridge University Press, Cambridge.
  • Barker, W.G. 1953. A method for the in vitro culturing of potato tubers. Sci. 118:384-385.
  • Berljak, J. and B. Pevalek-Kozlina. 1997. Starch accumulation as a marker for microtuberization in potato (Solanum tuberosum). Biologia, 52(4):553-559.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Cenzano, A., A. Vigliocco, O. Miersch and G. Abdala. 2006. Octadecanoid levels during stolon to tuber transition in potato. Potato Res. 48:107–115.
  • Cenzano, A., R. Cantoro, G. Racagni, C.D.L. Santos-Briones, T. Hernández-Sotomayor and G. Abdala. 2008. Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul. 56(3):307-316.
  • Davies, H.V. 1984. Sugar metabolism in the stolon tips of potato during tuberization. Zei tsehrift fűr Pflanzenphysiologie, 113: 377-381.
  • Dhital, S. P. and H. T. Lim. 2012. Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Res. 55(2):97-108.
  • Ebadi, M. and A. Iranbakhsh. 2011. The induction and growth of potato (Solanum tuberosum. L) microtubers (santé cultivar) in response to the different concentrations of 6-benzylaminopurine and sucrose. Afr. J. Biotechnol. 10(52):10626-10635.
  • Estrada, R., P. Tovar, and J. H. Dodds. 1986. Induction of in vitro tuber in a broad range of potato genotypes. Plant Cell Tissue Organ Cult. 7:3-10.
  • Ewing, E.E and P.C. Struik. 1992. Tuber formation in potato: induction, initiation and growth. In: Horticultural Review, ed. Janick J., 89-198, John Wiley & Sons Inc., New York.
  • Gargantini, P.R., V. Giammari, C. Grandellis, S.E. Feingold, S. Maldonado and R.M. Ulloa. 2009. Genomic and functional characterization of stCDPK1. Plant Mol. Biol. 70(1-2):153-172.
  • Geigenberger, P. and M. Stitt. 1993. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta, 189: 329-339.
  • Gopal, J. and J.L. Minocha. 1998. Effectiveness of in vitro selection for agronomic characters in potato. Euphytica, 103:67-74.
  • Hatch, M.D. and K.T. Glasziou. 1963. Sugar accumulation cycle in sugar cane. II. relationship of invertase activity to sugar content & growth rate in storage tissue of plants grown in controlled environments. Plant Physiol. 38(3):344-348.
  • Hoque, M.E. 2010. In vitro tuberization in potato (Solanum tuberosum L.). Plant omics J. 3(1):7-11.
  • Hovenkamp-Hermelink, J.H.M., J.N.D. Vries, P. Adamse, E. Jacobsen, B. Witholt and W.J. Feenstra. 1988. Rapid estimation of the amylase/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 31:241-246
  • Hussain, I., Z. Chaudhry, A. Muhammad, R. Asghar, S.M. Saqlan, and H. Rashid. 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. of Bot. 38(2): 275-282.
  • Ishida, B.K., G.W. Snyder and W.R. Belknap. 1989. The use of in vitro-grown microtuber discs in Agrobacterium-mediated transformation of Russet Burbank and Lemhi Russet potatoes. Plant Cell Rep. 8(6):325-328.
  • Khuri, S. and J. Moorby. 1995. Investigations into the role of sucrose in potato cv. Estima microtubers production in vitro. Ann Bot. 75: 295-303.
  • Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin Plant Biol. 7(3):235–246.
  • Kruger, N.J. 1990. Carbohydrate synthesis and degradation. In: Plant physiology, biochemistry and molecular biology, ed.
  • Dennis D.T. & Turpin D.M., 59-76, Longman, Harlow. Leclerc, Y., D.J. Donnelly and J.E.A. Seabrook. 1994.
  • Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell Tissue Organ Cult. 37(2):113-120.
  • Lizarrage, R., Z. Huaman and J.H. Dodds. 1989. In vitro conservation of potato germplasm at the International Potato Center. Am. Potato J. 66:253-269.
  • Morell, M. and L. Copeland. 1985. Sucrose synthase of soybean nodules. Plant Physiol. 78, 149-154
  • Motallebi-Azar, A., S. Kazemiani and F. Yarmohamadi. 2013. Effect of sugar/osmotica levels on in vitro microtuberization of potato (Solanum tuberosum L.). Russian Agricul. Sci. 39(2): 112–116.
  • Nistor, A., G. Campeanu, N. Atanasiu,,Chiru, N. and D. Karácsonyi. 2010. Influence of genotype on microtuber production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1):209-212.
  • Oparka, K.J., H.V. Davies, K.M. Wright, R. Viola and D.A.M. Prior. 1990. Effect of sink isolation on sugar uptake and starch synthesis by potato-tuber storage parenchyma. Planta, 182:113-117.
  • Öztürk, G. and Z. Yildirim. 2010. A comparison of field performances of minitubers and microtubers used in seed potato production. Turk. J. Field Crops, 15(2): 141-147.
  • Prat, S., W.B. Frommer, M.R. Höfgen, M. Keil, M. Köster-Töpfer, X.J. Liu, B. Müller, H. Peña-Cortés, M. Rocha-Sosa, J.J. Sanchez-Serrano, U. Sonnewald and L. Willmitzer. 1990. Gene expression during tuber development in potato plants. FEBS Lett. 268:334–338.
  • Raíces, M., P.R. Gargantini, D. Chinchilla, M. Crespi, M.T. Téllez-Iñón and R.M. Ulloa. 2003a. Regulation of CDPK isoforms during tuber development. Plant Mol. Biol. 52(5): 1011-1024.
  • Raíces, M., G.C. MacIntosh, R.M. Ulloa, P.R. Gargantini, N.F. Vozza and M.T. Tellez-Iňón. 2003b. Sucrose increases calcium-dependent protein kinase and phosphatase activities in potato plants. Cell. Mol. Biol. 49:959–964.
  • Raíces, M., R.M. Ulloa, G.C. Macintosh, M. Crespi and M.T. Téllez-Iñón. 2003c. StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. J. Exp. Bot. 54(392): 2589-2591.
  • Servet, K., D.P. Alexander, E.R. Paul and D.K. Stephen. 2000. Comparison of thidiazuron and two nitroguanidines to kinetin on potato microtuberization in vitro under short and long days. J. Plant Growth Regul.19:429–436.
  • Si, H.J., J. Liu, J. Huang and C.H. Xie. 2008. Functional analysis of a class I patatin gene SK24-1 in microtuber formation of transgenic potatoes. Can. J. Plant Sci. 88(4):593-598.
  • Simko, I. 1994. Sucrose application causes hormonal changes associated with potato tuber induction. J. Plant Growth Regul, 13:73-77.
  • Sonnewald, U., M.R. Hajirezael, J. Kossman, A. Heyer, R.N. Trethewey and L. Willmitzer. 1997. Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat. Biotechnol. 15:794-797.
  • Sowokinos, J.R. and J.L. Varn. 1992. Induction of sucrose synthase in potato tissue culture: effect of carbon source and metabolic regulators on sink strength. J. Plant Physiol. 139(6):672–679.
  • Sung, S.S., W.P. Xu and C.C.J. Black. 1989. Identification of actively filling sucrose sinks. Plant Physiol. 89, 1117-1121.
  • Tovar, P., R. Estrada, L. Schilde-Rentschler, and J.H. Dodds. 1985. Induction of in vitro potato tubers. CIP circular 13:1-4, International Potato Centre, Lima.
  • Visser, R.G.F., D. Vreugdenhil, T. Hendriks and E.J. Jacobsen. 1994. Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Physiol. Plant. 90:285–292.
  • Wang, P. and C. Hu. 1982. In vitro tuberization and virus free seed-potato production in Taiwan. Am. Potato J. 59: 33-37.
  • Wang, W. 2000. Using phenol method to determine sucrose content in plant. In: Experiment principle and technique for plant physiology and biochemistry, ed. Li, H.S., 199-200, China Higher Education Press, Beijing.
  • Wright, K.M. and K.J. Oparka. 1989. Sucrose uptake and partitioning in discs derived from source versus sink potato tubers. Planta, 177(2): 237-244.
  • Xu, X., A.A. M. van Lammeren, E. Vermeer and D. Vreugdenhil. 1998. The role of gibberellln, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117:575-584.
  • Zhu, Y.J., E. Komor, and P.H. Moore. 1997. Sucrose Accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol., 115(2):609-616.

PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO

Year 2016, , 254 - 260, 15.12.2016
https://doi.org/10.17557/tjfc.55137

Abstract

Microtubers are valuable tools to be used in the researches of potato. Among the factors sucrose is the most
critical stimulus for potato microtuber production in vitro. The aim of our study was to define whether only
sucrose was enough to induce the tuber and how it impacted on physiological responses in potato in vitro.
Among sucrose concentrations chosen 80 and 100g/l sucrose could induce maximum tubers in three cultivars
of Solanum tuberosum L., Atlantic, Desiree and 851 in vitro at 22 oC under 16-h photoperiod. Meanwhile tuber
induction percentage showed no difference in MS with 80 and 100g/l sucrose among 0, 16 and 24-h
photoperiod and cuttings with no nodes induced no tubers in cv. Atlantic. Therefore, 80 or 100g/l of exogenous
sucrose concentrations and cuttings with node were essential to in vitro tuber induction in potato. The
endogenous sucrose content and acid invertase in induced cuttings were higher than corresponding tubers and
dramatically increased with the increase of sucrose concentration in MS. Starch content was completely
opposite to endogenous sucrose content and decreased with the increase of sucrose concentration in MS.
Sucrose synthase (Susy) and sucrose phosphate synthase (SPS) accumulated only in tubers, but no significant
differences of Susy and SPS were between 80g/l and 100g/l sucrose. In conclusion, high levels of exogenous
sucrose resulted in a dramatic high gradient of endogenous sucrose content between inducing cuttings and the
corresponding tubers, which was beneficial to trigger differential activity expression of sugar metabolizing
enzymes and to accumulate starch in tubers in vitro. 

References

  • Altindal, D. and T. Karadogan. 2010. The effect of carbon sources on in vitro microtuberization of potato (Solanum tuberosum L.). Turk. J. Field Crops, 15(1): 7-11.
  • Aslam, A., A. Ali , N.H. Naveed, A. Saleem, J. Iqbal and A. Aslam. 2011. Effect of interaction of 6-benzyl aminopurine (BA) and sucrose for efficient microtuberization of two elite potato (Solanum tuberosum L.) cultivars, Desiree and Cardinal. Afr. J. Biotechnol. 10(59):12738-12744.
  • Avigad, C. 1982. Sucrose and other dissaccharides. In: Storage Carbohydrates in Vascular Plants, ed. Lewis D.H., 53-73, Cambridge University Press, Cambridge.
  • Barker, W.G. 1953. A method for the in vitro culturing of potato tubers. Sci. 118:384-385.
  • Berljak, J. and B. Pevalek-Kozlina. 1997. Starch accumulation as a marker for microtuberization in potato (Solanum tuberosum). Biologia, 52(4):553-559.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Cenzano, A., A. Vigliocco, O. Miersch and G. Abdala. 2006. Octadecanoid levels during stolon to tuber transition in potato. Potato Res. 48:107–115.
  • Cenzano, A., R. Cantoro, G. Racagni, C.D.L. Santos-Briones, T. Hernández-Sotomayor and G. Abdala. 2008. Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul. 56(3):307-316.
  • Davies, H.V. 1984. Sugar metabolism in the stolon tips of potato during tuberization. Zei tsehrift fűr Pflanzenphysiologie, 113: 377-381.
  • Dhital, S. P. and H. T. Lim. 2012. Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Res. 55(2):97-108.
  • Ebadi, M. and A. Iranbakhsh. 2011. The induction and growth of potato (Solanum tuberosum. L) microtubers (santé cultivar) in response to the different concentrations of 6-benzylaminopurine and sucrose. Afr. J. Biotechnol. 10(52):10626-10635.
  • Estrada, R., P. Tovar, and J. H. Dodds. 1986. Induction of in vitro tuber in a broad range of potato genotypes. Plant Cell Tissue Organ Cult. 7:3-10.
  • Ewing, E.E and P.C. Struik. 1992. Tuber formation in potato: induction, initiation and growth. In: Horticultural Review, ed. Janick J., 89-198, John Wiley & Sons Inc., New York.
  • Gargantini, P.R., V. Giammari, C. Grandellis, S.E. Feingold, S. Maldonado and R.M. Ulloa. 2009. Genomic and functional characterization of stCDPK1. Plant Mol. Biol. 70(1-2):153-172.
  • Geigenberger, P. and M. Stitt. 1993. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta, 189: 329-339.
  • Gopal, J. and J.L. Minocha. 1998. Effectiveness of in vitro selection for agronomic characters in potato. Euphytica, 103:67-74.
  • Hatch, M.D. and K.T. Glasziou. 1963. Sugar accumulation cycle in sugar cane. II. relationship of invertase activity to sugar content & growth rate in storage tissue of plants grown in controlled environments. Plant Physiol. 38(3):344-348.
  • Hoque, M.E. 2010. In vitro tuberization in potato (Solanum tuberosum L.). Plant omics J. 3(1):7-11.
  • Hovenkamp-Hermelink, J.H.M., J.N.D. Vries, P. Adamse, E. Jacobsen, B. Witholt and W.J. Feenstra. 1988. Rapid estimation of the amylase/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 31:241-246
  • Hussain, I., Z. Chaudhry, A. Muhammad, R. Asghar, S.M. Saqlan, and H. Rashid. 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. of Bot. 38(2): 275-282.
  • Ishida, B.K., G.W. Snyder and W.R. Belknap. 1989. The use of in vitro-grown microtuber discs in Agrobacterium-mediated transformation of Russet Burbank and Lemhi Russet potatoes. Plant Cell Rep. 8(6):325-328.
  • Khuri, S. and J. Moorby. 1995. Investigations into the role of sucrose in potato cv. Estima microtubers production in vitro. Ann Bot. 75: 295-303.
  • Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin Plant Biol. 7(3):235–246.
  • Kruger, N.J. 1990. Carbohydrate synthesis and degradation. In: Plant physiology, biochemistry and molecular biology, ed.
  • Dennis D.T. & Turpin D.M., 59-76, Longman, Harlow. Leclerc, Y., D.J. Donnelly and J.E.A. Seabrook. 1994.
  • Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell Tissue Organ Cult. 37(2):113-120.
  • Lizarrage, R., Z. Huaman and J.H. Dodds. 1989. In vitro conservation of potato germplasm at the International Potato Center. Am. Potato J. 66:253-269.
  • Morell, M. and L. Copeland. 1985. Sucrose synthase of soybean nodules. Plant Physiol. 78, 149-154
  • Motallebi-Azar, A., S. Kazemiani and F. Yarmohamadi. 2013. Effect of sugar/osmotica levels on in vitro microtuberization of potato (Solanum tuberosum L.). Russian Agricul. Sci. 39(2): 112–116.
  • Nistor, A., G. Campeanu, N. Atanasiu,,Chiru, N. and D. Karácsonyi. 2010. Influence of genotype on microtuber production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1):209-212.
  • Oparka, K.J., H.V. Davies, K.M. Wright, R. Viola and D.A.M. Prior. 1990. Effect of sink isolation on sugar uptake and starch synthesis by potato-tuber storage parenchyma. Planta, 182:113-117.
  • Öztürk, G. and Z. Yildirim. 2010. A comparison of field performances of minitubers and microtubers used in seed potato production. Turk. J. Field Crops, 15(2): 141-147.
  • Prat, S., W.B. Frommer, M.R. Höfgen, M. Keil, M. Köster-Töpfer, X.J. Liu, B. Müller, H. Peña-Cortés, M. Rocha-Sosa, J.J. Sanchez-Serrano, U. Sonnewald and L. Willmitzer. 1990. Gene expression during tuber development in potato plants. FEBS Lett. 268:334–338.
  • Raíces, M., P.R. Gargantini, D. Chinchilla, M. Crespi, M.T. Téllez-Iñón and R.M. Ulloa. 2003a. Regulation of CDPK isoforms during tuber development. Plant Mol. Biol. 52(5): 1011-1024.
  • Raíces, M., G.C. MacIntosh, R.M. Ulloa, P.R. Gargantini, N.F. Vozza and M.T. Tellez-Iňón. 2003b. Sucrose increases calcium-dependent protein kinase and phosphatase activities in potato plants. Cell. Mol. Biol. 49:959–964.
  • Raíces, M., R.M. Ulloa, G.C. Macintosh, M. Crespi and M.T. Téllez-Iñón. 2003c. StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. J. Exp. Bot. 54(392): 2589-2591.
  • Servet, K., D.P. Alexander, E.R. Paul and D.K. Stephen. 2000. Comparison of thidiazuron and two nitroguanidines to kinetin on potato microtuberization in vitro under short and long days. J. Plant Growth Regul.19:429–436.
  • Si, H.J., J. Liu, J. Huang and C.H. Xie. 2008. Functional analysis of a class I patatin gene SK24-1 in microtuber formation of transgenic potatoes. Can. J. Plant Sci. 88(4):593-598.
  • Simko, I. 1994. Sucrose application causes hormonal changes associated with potato tuber induction. J. Plant Growth Regul, 13:73-77.
  • Sonnewald, U., M.R. Hajirezael, J. Kossman, A. Heyer, R.N. Trethewey and L. Willmitzer. 1997. Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat. Biotechnol. 15:794-797.
  • Sowokinos, J.R. and J.L. Varn. 1992. Induction of sucrose synthase in potato tissue culture: effect of carbon source and metabolic regulators on sink strength. J. Plant Physiol. 139(6):672–679.
  • Sung, S.S., W.P. Xu and C.C.J. Black. 1989. Identification of actively filling sucrose sinks. Plant Physiol. 89, 1117-1121.
  • Tovar, P., R. Estrada, L. Schilde-Rentschler, and J.H. Dodds. 1985. Induction of in vitro potato tubers. CIP circular 13:1-4, International Potato Centre, Lima.
  • Visser, R.G.F., D. Vreugdenhil, T. Hendriks and E.J. Jacobsen. 1994. Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Physiol. Plant. 90:285–292.
  • Wang, P. and C. Hu. 1982. In vitro tuberization and virus free seed-potato production in Taiwan. Am. Potato J. 59: 33-37.
  • Wang, W. 2000. Using phenol method to determine sucrose content in plant. In: Experiment principle and technique for plant physiology and biochemistry, ed. Li, H.S., 199-200, China Higher Education Press, Beijing.
  • Wright, K.M. and K.J. Oparka. 1989. Sucrose uptake and partitioning in discs derived from source versus sink potato tubers. Planta, 177(2): 237-244.
  • Xu, X., A.A. M. van Lammeren, E. Vermeer and D. Vreugdenhil. 1998. The role of gibberellln, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117:575-584.
  • Zhu, Y.J., E. Komor, and P.H. Moore. 1997. Sucrose Accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol., 115(2):609-616.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Xueqin He This is me

Meilian Meng This is me

Publication Date December 15, 2016
Published in Issue Year 2016

Cite

APA He, X., & Meng, M. (2016). PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO. Turkish Journal Of Field Crops, 21(2), 254-260. https://doi.org/10.17557/tjfc.55137
AMA He X, Meng M. PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO. TJFC. December 2016;21(2):254-260. doi:10.17557/tjfc.55137
Chicago He, Xueqin, and Meilian Meng. “PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO”. Turkish Journal Of Field Crops 21, no. 2 (December 2016): 254-60. https://doi.org/10.17557/tjfc.55137.
EndNote He X, Meng M (December 1, 2016) PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO. Turkish Journal Of Field Crops 21 2 254–260.
IEEE X. He and M. Meng, “PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO”, TJFC, vol. 21, no. 2, pp. 254–260, 2016, doi: 10.17557/tjfc.55137.
ISNAD He, Xueqin - Meng, Meilian. “PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO”. Turkish Journal Of Field Crops 21/2 (December 2016), 254-260. https://doi.org/10.17557/tjfc.55137.
JAMA He X, Meng M. PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO. TJFC. 2016;21:254–260.
MLA He, Xueqin and Meilian Meng. “PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO”. Turkish Journal Of Field Crops, vol. 21, no. 2, 2016, pp. 254-60, doi:10.17557/tjfc.55137.
Vancouver He X, Meng M. PHYSIOLOGICAL RESPONSES TO HIGH EXOGENOUS SUCROSE IN TUBER INDUCTION OF POTATO IN VITRO. TJFC. 2016;21(2):254-60.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474