Research Article
BibTex RIS Cite

THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES

Year 2019, , 28 - 38, 14.06.2019
https://doi.org/10.17557/tjfc.562637

Abstract

Seed yields of 15 soybean genotypes were evaluated in three locations i.e. Bursa, Samsun and Konya under main crop conditions through summer seasons from 2014 to 2016. The used design was a randomized complete block design with four replications. This research is aimed to estimate the stability parameters of seed yield of 15 soybean genotypes by used different stability analysis methods over nine environmental conditions and to study interrelationship among these stability methods. Genotypes, environments and genotype by environment interactions (GEI) played a significant role in terms of seed yield in this study. The genotypes KAMD 03, BATEM 306, BDUS 04, ARISOY and ATAEM 07 had higher seed yields and regression coefficient values above 1.0. These genotypes are sensitive to environmental variations and would be suggested for cultivation under favourable conditions, whereas KAMD 01, KASM 02 and KASM 03 with bi<1 and lowest average yields were poorly adapted across unfavourable environment conditions. The genotype BDSA 05 having regression coefficient below 1.0 and higher seed yield than average yield were goodly adapted to unfavourable environment conditions. The results of most parametric and non-parametric stability analyses showed that genotypes BDUS 04, KASM 02, KASM 03, KAMD 03 and BDSA 05 were stable genotypes. These genotypes were demonstrated superior adaptability with high yield performances in many environments. Results of correlation analysis indicated that seed yield was significantly correlated with Ri2 (P<0.05), Si(3) (P<0.05), Di (P<0.01), Si(6) (P<0.01), TOP (P<0.01) and showed a negative and significant correlation with Pi and RS (P<0.01). The coefficient of regression (bi) had positively significant associated with CVi, αi, Si(3) and Si(6) (P<0.01) and with the superiority parameter (TOP) (P<0.05).

Supporting Institution

Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

113 O 082

Thanks

This research was funded by the Scientific and Technological Research Council of Turkey (TUBİTAK, project number 113 O 082). The authors thank TUBİTAK for their financial support.

References

  • Ablett, G.R., R.I. Buzzell, W.D. Beversdorf, O.B. Allen. 1994.Comparative stability of indeterminate and semi determinate soybean lines. Crop Sci. 34(2): 347-351. Allard, R.W. 1960. Principles of Plant Breeding. John Wiley and Sons, Inc., Newyork.
  • Akcura, M., Y. Kaya. 2008. Non-parametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.) Genetics and Molecular Biology 31(4): 906-913.
  • Akcura, M., Y. Kaya, S. Taner. 2009. Evaluation of durum wheat genotypes using parametric and non parametric stability statistics. Turkish Journal of Field Crops 14(2): 111-122.
  • Al-Assily, Kh. A., S.R. Saleeb, S.H. Mansour, M.S. Mohamed. 2002. Stability parameters for soybean genotypes as criteria for response to environmental conditions. Minufia Journal of Agric Res. 27(2): 169-180.
  • Bakal, H., L. Gulluoglu, B. Onat, H. Arioglu. 2017. The effect of growing season on some agronomic and quality characteristics of soybean varieties in mediterranean region in Turkey. Turkish Journal of Field Crops 22(2): 187-196.
  • Becker, H.C., J. Leon. 1988. Stability analysis in plant breeding. Plant Breed. 101:1-23.
  • Carvalho, C.G.P., C.A.A. Arıas, J.F.F. De Toledo, L.A. De Almeida, R.A. De Kiihl, M.F. Oliveira, D.M. Hiromoto, C. Takeda. 2003. Proposta de classificação dos coeficientes de variação em relação à produtividade e altura da planta de soja. Pesquisa Agropecuária Brasileira 38(2): 187-193.
  • Chandrakar, P.K., S. Rajeev, S.K. Agrawal, S.S. Rao, R. Shrivastava. 1998. Stability analysis of soybean [Glycine max (L.) Merrill] varieties in rice zone of Madhya. Pradesh Journal of Oilseeds Res. 15: 247-249.
  • Chaudhary, K.R., Wu, J. 2012. Stability analysis for yield and seed quality of soybean [Glycine max (L.) Merrill] across different environments in Eastern South Dakota. Conference on Applied Statistics in Agriculture, Kansas State University.
  • Crossa, J. 1990. Statistical analyses of multi-location trials. Advances in Agron. 44: 55-85.
  • Duarte, J.B., R. Vencovsky. 1999. Interac¸a˜o geno´tipos·ambientes: Uma Introduc¸a˜o a` Ana´lise ‘‘AMMI’’ Se´rie Monografias, n 9. Ribeira˜o Preto, Sociedade Brasileira de Gene´tica, 60p
  • Eberhart, S.A., W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36-40.
  • EL-Refaey, R.A., E.H. EL-Seidy, M.A. El-Borai, T.M. Abu Sein. 2013. Phenotypic stability parameters of yield for some soybean genotypes. Egypt Journal of Plant Breed. 17(2): 455-466.
  • Finlay, K.W., G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Res. 14: 742-754.
  • Flores, F., M.T. Moreno, J.I. Cubero. 1998. A comparison of univariate and multivariate methods to analyze G x E interaction. Field Crops Research 56: 271-286.
  • Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57-64.
  • Francis, T.R., L.W. Kannenberg. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can J Plant Sci. 58: 1029-1034.
  • Gurmu, F., H. Mohammed, G. Alemaw. 2009. Genotype and environment interaction and stability of soybean for grain yield and nutritional quality. African Crop Science Journal 17: 87-99.
  • Hanson, W.D. 1970. Genotypic stability. Theoretical and Applied Genetics 40: 226-231.
  • Hernandez, C.M., J. Crossa, A. Castillo. 1993. The area under the function: An index for selecting desirable genotypes. Theor Appl Genet. 87:409-415.
  • Hossain, M.A., L. Rahman, A.K.M. Shamsuddin. 2003. Genotype and environment interaction and stability analysis in soybean. Journal of Biological Sciences 3: 1026-1031.
  • Huhn, M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10: 112-117.
  • Huhn, M. 1987. Stability analysis of winter rape (Brassica napus L.) by using plant density and mean yield per plant. Journal of Agronomy and Crop Science 159(2): 73-81
  • Ikeogu, U.N., G.E. Nwofia. 2013. Yield parameters and stabilty of soybean [Glycine max (L.) Merril] as influenced by phosphorus fertilizer rates in two ultisols. Journal of Plant Breeding and Crop Science 5(4): 54-63.
  • Ilker, E., M. Kocaturk, A. Kadiroglu, A. Yildirim, G. Ozturk, H. Yildiz, İ. Koken. 2018a. Adaptation abilities and quality parameters of selected soybean lines under double cropping in the mediterranean region. Turkish Journal of Field Crops 23(1): 49-55.
  • Ilker, E., M. Kocatürk, A. Kadiroglu, M. Altinbas, A. Yildirim, G. Ozturk, H. Yildiz. 2018b. Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turk J Field Crops 23(2): 80-84.
  • Kang, M.S. 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications 16: 113-115.
  • Kilic, H., T. Yagbasanlar. 2010. Genotype x Environment Interaction and genotypic Stability Analysis for Grain Yield and Several Quality Traits of Durum Wheat in the South-Eastern Anatolia Region. Not. Bot. Hort. Agrobot. Cluj 38 (3): 253-258
  • Lin, C.S., M.R. Binns. 1988. A method of analysing cultivar × location × year experiments: A new stability parameter. Theor Appl Genet. 76: 425-430.
  • Meotti, G.V., G. Benin, R.R. Silva, E. Beche, L.B. Munaro. 2012. Épocas de semeadura e desempenho agronômico de cultivares de soja. Pesquisa Agropecuária Brasileira 47(1): 14-21.
  • Morsy, A.R., W.M. Fares, A.M. El-Garhy, A.A.M Ashrie. 2012. Evaluation of regression models and variance measures as stability parameters of some soybean genotypes. Alex J Agric Res. 57(2): 141-152.
  • Morsy, A.R., W.M. Fares, S.B. Ragheb, M.A. Ibrahim. 2015. Stability analysis of some soybean genotypes using a simplified statistical model. Journal of Plant Production 6 (12): 1975 – 1990. Nassar, R., M. Huhn. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics 43: 45-53.
  • Oliveira, L.G., O.T. Hamawaki, G.A. Simon, L.B. Sousa, A.P.O Nogueira, D.F. Rezende, C.D.L. Hamawaki. 2012. Adaptability and stability of soybean yield in two soybean producing regions. Biosci J Uberlândia 28(6): 852-861.
  • Piepho, H.P. 1998. Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theoretical and Applied Genetics 97: 195-201.
  • Pinthus, M.J. 1973. Estimates of genotypic value: a proposed method. Euphytica 22: 345–351.
  • Plaisted, R.L., L.C.A. Peterson. 1959. Technique for evaluating the ability of selections and yield consistency in different locations or seasons. Am Potato J. 36: 381-385.
  • Primomo, V.S., D.E. Falk, G.R. Ablett, J.W. Taner, I. Rajcan. 2002. Genotype x environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci. 42: 37-44.
  • Radi, M.M., M.A. El-Borai, T. Abdalla, E.B. Safia, A.E. Sharaf, R.F. Desouki. 1993. Estimates of stability parameters of yield of some soybean cultivars. J Agric Res Tanta Univ. 19(1): 86-91.
  • Ramana, M.V., A. Satyanarayana. 2005. Stability of yield and its components in soybean (Glycine max L. Merrill). J Oilseeds Res. 22: 18-21.
  • Rao, M.S.S., B.G. Mullinix, M. Rangappa, E. Cebert, A.S. Bhagasari, V.T. Sapra, J.M. Joshi, R.B. Dadson. 2002.Genotype and environment interactions and yield stability of food-grade soybean genotypes. Agron J. 94: 72-80.
  • SAS Institute. 1999. SAS/STAT user’s guide. 8. Version. SAS Institute Inc. Cary. NC.
  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237-245.
  • Silveira, D.A., L.F. Pricinotto, M. Nardino, C.A. Bahry, C.E.C. Prete, L. Cruz. 2016. Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods. Semina: Ciências Agrárias Londrina 37(6): 3973-3982.
  • Steel, R.G.D., J.H. Torrie. 1980. Principles and Procedures of Statistics. A biometrical approach. 2nd edition. McGraw-Hill, New York, USA, pp. 20-90.
  • Tadesse, M., A. Elmi, T. Mebrahtu, E. Abdulkadir. 1997. Stability analysis of vegetable soybean. Soybean Genetics Newsletter 24: 214-216. Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Sci. 11: 184–190.
  • Vargas, M., J. Crossa, K. Sayre, M. Reynolds, M. Ramirez, M. Talbot. 1998. Interpreting genotype x interaction in wheat by partial least squares regression. Crop Science 38: 679-689.
  • Wricke, G. 1962. On a method of understanding the biological diversity in field research. Z. Pflanzenzucht 47: 92-46.
  • Yildirim, M.B., C.F. Caliskan, Y. Arshad. 1992. Determining the environmental adaptability of some potato genotypes using different stability parameters. Turkish Journal of Agriculture and Forestry 3(16): 621-629.
  • Yothasiri, A., T. Somwang, Y. Amnuay, S. Teera. 2000. Stability of soybean genotypes in Central Plain Thailand. Kasetsart J Nat Sci. 34: 315-322.
Year 2019, , 28 - 38, 14.06.2019
https://doi.org/10.17557/tjfc.562637

Abstract

Project Number

113 O 082

References

  • Ablett, G.R., R.I. Buzzell, W.D. Beversdorf, O.B. Allen. 1994.Comparative stability of indeterminate and semi determinate soybean lines. Crop Sci. 34(2): 347-351. Allard, R.W. 1960. Principles of Plant Breeding. John Wiley and Sons, Inc., Newyork.
  • Akcura, M., Y. Kaya. 2008. Non-parametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.) Genetics and Molecular Biology 31(4): 906-913.
  • Akcura, M., Y. Kaya, S. Taner. 2009. Evaluation of durum wheat genotypes using parametric and non parametric stability statistics. Turkish Journal of Field Crops 14(2): 111-122.
  • Al-Assily, Kh. A., S.R. Saleeb, S.H. Mansour, M.S. Mohamed. 2002. Stability parameters for soybean genotypes as criteria for response to environmental conditions. Minufia Journal of Agric Res. 27(2): 169-180.
  • Bakal, H., L. Gulluoglu, B. Onat, H. Arioglu. 2017. The effect of growing season on some agronomic and quality characteristics of soybean varieties in mediterranean region in Turkey. Turkish Journal of Field Crops 22(2): 187-196.
  • Becker, H.C., J. Leon. 1988. Stability analysis in plant breeding. Plant Breed. 101:1-23.
  • Carvalho, C.G.P., C.A.A. Arıas, J.F.F. De Toledo, L.A. De Almeida, R.A. De Kiihl, M.F. Oliveira, D.M. Hiromoto, C. Takeda. 2003. Proposta de classificação dos coeficientes de variação em relação à produtividade e altura da planta de soja. Pesquisa Agropecuária Brasileira 38(2): 187-193.
  • Chandrakar, P.K., S. Rajeev, S.K. Agrawal, S.S. Rao, R. Shrivastava. 1998. Stability analysis of soybean [Glycine max (L.) Merrill] varieties in rice zone of Madhya. Pradesh Journal of Oilseeds Res. 15: 247-249.
  • Chaudhary, K.R., Wu, J. 2012. Stability analysis for yield and seed quality of soybean [Glycine max (L.) Merrill] across different environments in Eastern South Dakota. Conference on Applied Statistics in Agriculture, Kansas State University.
  • Crossa, J. 1990. Statistical analyses of multi-location trials. Advances in Agron. 44: 55-85.
  • Duarte, J.B., R. Vencovsky. 1999. Interac¸a˜o geno´tipos·ambientes: Uma Introduc¸a˜o a` Ana´lise ‘‘AMMI’’ Se´rie Monografias, n 9. Ribeira˜o Preto, Sociedade Brasileira de Gene´tica, 60p
  • Eberhart, S.A., W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36-40.
  • EL-Refaey, R.A., E.H. EL-Seidy, M.A. El-Borai, T.M. Abu Sein. 2013. Phenotypic stability parameters of yield for some soybean genotypes. Egypt Journal of Plant Breed. 17(2): 455-466.
  • Finlay, K.W., G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Res. 14: 742-754.
  • Flores, F., M.T. Moreno, J.I. Cubero. 1998. A comparison of univariate and multivariate methods to analyze G x E interaction. Field Crops Research 56: 271-286.
  • Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57-64.
  • Francis, T.R., L.W. Kannenberg. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can J Plant Sci. 58: 1029-1034.
  • Gurmu, F., H. Mohammed, G. Alemaw. 2009. Genotype and environment interaction and stability of soybean for grain yield and nutritional quality. African Crop Science Journal 17: 87-99.
  • Hanson, W.D. 1970. Genotypic stability. Theoretical and Applied Genetics 40: 226-231.
  • Hernandez, C.M., J. Crossa, A. Castillo. 1993. The area under the function: An index for selecting desirable genotypes. Theor Appl Genet. 87:409-415.
  • Hossain, M.A., L. Rahman, A.K.M. Shamsuddin. 2003. Genotype and environment interaction and stability analysis in soybean. Journal of Biological Sciences 3: 1026-1031.
  • Huhn, M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10: 112-117.
  • Huhn, M. 1987. Stability analysis of winter rape (Brassica napus L.) by using plant density and mean yield per plant. Journal of Agronomy and Crop Science 159(2): 73-81
  • Ikeogu, U.N., G.E. Nwofia. 2013. Yield parameters and stabilty of soybean [Glycine max (L.) Merril] as influenced by phosphorus fertilizer rates in two ultisols. Journal of Plant Breeding and Crop Science 5(4): 54-63.
  • Ilker, E., M. Kocaturk, A. Kadiroglu, A. Yildirim, G. Ozturk, H. Yildiz, İ. Koken. 2018a. Adaptation abilities and quality parameters of selected soybean lines under double cropping in the mediterranean region. Turkish Journal of Field Crops 23(1): 49-55.
  • Ilker, E., M. Kocatürk, A. Kadiroglu, M. Altinbas, A. Yildirim, G. Ozturk, H. Yildiz. 2018b. Stability analyses for double cropping in soybean [(Glycine max L.) Merrill]. Turk J Field Crops 23(2): 80-84.
  • Kang, M.S. 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications 16: 113-115.
  • Kilic, H., T. Yagbasanlar. 2010. Genotype x Environment Interaction and genotypic Stability Analysis for Grain Yield and Several Quality Traits of Durum Wheat in the South-Eastern Anatolia Region. Not. Bot. Hort. Agrobot. Cluj 38 (3): 253-258
  • Lin, C.S., M.R. Binns. 1988. A method of analysing cultivar × location × year experiments: A new stability parameter. Theor Appl Genet. 76: 425-430.
  • Meotti, G.V., G. Benin, R.R. Silva, E. Beche, L.B. Munaro. 2012. Épocas de semeadura e desempenho agronômico de cultivares de soja. Pesquisa Agropecuária Brasileira 47(1): 14-21.
  • Morsy, A.R., W.M. Fares, A.M. El-Garhy, A.A.M Ashrie. 2012. Evaluation of regression models and variance measures as stability parameters of some soybean genotypes. Alex J Agric Res. 57(2): 141-152.
  • Morsy, A.R., W.M. Fares, S.B. Ragheb, M.A. Ibrahim. 2015. Stability analysis of some soybean genotypes using a simplified statistical model. Journal of Plant Production 6 (12): 1975 – 1990. Nassar, R., M. Huhn. 1987. Studies on estimation of phenotypic stability: tests of significance for non-parametric measures of phenotypic stability. Biometrics 43: 45-53.
  • Oliveira, L.G., O.T. Hamawaki, G.A. Simon, L.B. Sousa, A.P.O Nogueira, D.F. Rezende, C.D.L. Hamawaki. 2012. Adaptability and stability of soybean yield in two soybean producing regions. Biosci J Uberlândia 28(6): 852-861.
  • Piepho, H.P. 1998. Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theoretical and Applied Genetics 97: 195-201.
  • Pinthus, M.J. 1973. Estimates of genotypic value: a proposed method. Euphytica 22: 345–351.
  • Plaisted, R.L., L.C.A. Peterson. 1959. Technique for evaluating the ability of selections and yield consistency in different locations or seasons. Am Potato J. 36: 381-385.
  • Primomo, V.S., D.E. Falk, G.R. Ablett, J.W. Taner, I. Rajcan. 2002. Genotype x environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci. 42: 37-44.
  • Radi, M.M., M.A. El-Borai, T. Abdalla, E.B. Safia, A.E. Sharaf, R.F. Desouki. 1993. Estimates of stability parameters of yield of some soybean cultivars. J Agric Res Tanta Univ. 19(1): 86-91.
  • Ramana, M.V., A. Satyanarayana. 2005. Stability of yield and its components in soybean (Glycine max L. Merrill). J Oilseeds Res. 22: 18-21.
  • Rao, M.S.S., B.G. Mullinix, M. Rangappa, E. Cebert, A.S. Bhagasari, V.T. Sapra, J.M. Joshi, R.B. Dadson. 2002.Genotype and environment interactions and yield stability of food-grade soybean genotypes. Agron J. 94: 72-80.
  • SAS Institute. 1999. SAS/STAT user’s guide. 8. Version. SAS Institute Inc. Cary. NC.
  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237-245.
  • Silveira, D.A., L.F. Pricinotto, M. Nardino, C.A. Bahry, C.E.C. Prete, L. Cruz. 2016. Determination of the adaptability and stability of soybean cultivars in different locations and at different sowing times in Paraná state using the AMMI and Eberhart and Russel methods. Semina: Ciências Agrárias Londrina 37(6): 3973-3982.
  • Steel, R.G.D., J.H. Torrie. 1980. Principles and Procedures of Statistics. A biometrical approach. 2nd edition. McGraw-Hill, New York, USA, pp. 20-90.
  • Tadesse, M., A. Elmi, T. Mebrahtu, E. Abdulkadir. 1997. Stability analysis of vegetable soybean. Soybean Genetics Newsletter 24: 214-216. Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Sci. 11: 184–190.
  • Vargas, M., J. Crossa, K. Sayre, M. Reynolds, M. Ramirez, M. Talbot. 1998. Interpreting genotype x interaction in wheat by partial least squares regression. Crop Science 38: 679-689.
  • Wricke, G. 1962. On a method of understanding the biological diversity in field research. Z. Pflanzenzucht 47: 92-46.
  • Yildirim, M.B., C.F. Caliskan, Y. Arshad. 1992. Determining the environmental adaptability of some potato genotypes using different stability parameters. Turkish Journal of Agriculture and Forestry 3(16): 621-629.
  • Yothasiri, A., T. Somwang, Y. Amnuay, S. Teera. 2000. Stability of soybean genotypes in Central Plain Thailand. Kasetsart J Nat Sci. 34: 315-322.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Abdurrahim Tanju Goksoy

Mehmet Sıncık This is me

Mehmet Erdogmus This is me

Meral Ergın This is me

Selim Aytac This is me

Gonul Gumuscu This is me

Oguz Gunduz This is me

Ramazan Keles This is me

Gamze Bayram This is me

Emre Senyıgıt This is me

Project Number 113 O 082
Publication Date June 14, 2019
Published in Issue Year 2019

Cite

APA Goksoy, A. T., Sıncık, M., Erdogmus, M., Ergın, M., et al. (2019). THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES. Turkish Journal Of Field Crops, 24(1), 28-38. https://doi.org/10.17557/tjfc.562637
AMA Goksoy AT, Sıncık M, Erdogmus M, Ergın M, Aytac S, Gumuscu G, Gunduz O, Keles R, Bayram G, Senyıgıt E. THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES. TJFC. June 2019;24(1):28-38. doi:10.17557/tjfc.562637
Chicago Goksoy, Abdurrahim Tanju, Mehmet Sıncık, Mehmet Erdogmus, Meral Ergın, Selim Aytac, Gonul Gumuscu, Oguz Gunduz, Ramazan Keles, Gamze Bayram, and Emre Senyıgıt. “THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES”. Turkish Journal Of Field Crops 24, no. 1 (June 2019): 28-38. https://doi.org/10.17557/tjfc.562637.
EndNote Goksoy AT, Sıncık M, Erdogmus M, Ergın M, Aytac S, Gumuscu G, Gunduz O, Keles R, Bayram G, Senyıgıt E (June 1, 2019) THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES. Turkish Journal Of Field Crops 24 1 28–38.
IEEE A. T. Goksoy, “THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES”, TJFC, vol. 24, no. 1, pp. 28–38, 2019, doi: 10.17557/tjfc.562637.
ISNAD Goksoy, Abdurrahim Tanju et al. “THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES”. Turkish Journal Of Field Crops 24/1 (June 2019), 28-38. https://doi.org/10.17557/tjfc.562637.
JAMA Goksoy AT, Sıncık M, Erdogmus M, Ergın M, Aytac S, Gumuscu G, Gunduz O, Keles R, Bayram G, Senyıgıt E. THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES. TJFC. 2019;24:28–38.
MLA Goksoy, Abdurrahim Tanju et al. “THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES”. Turkish Journal Of Field Crops, vol. 24, no. 1, 2019, pp. 28-38, doi:10.17557/tjfc.562637.
Vancouver Goksoy AT, Sıncık M, Erdogmus M, Ergın M, Aytac S, Gumuscu G, Gunduz O, Keles R, Bayram G, Senyıgıt E. THE PARAMETRIC AND NON-PARAMETRIC STABILITY ANALYSES FOR INTERPRETING GENOTYPE BY ENVIRONMENT INTERACTION OF SOME SOYBEAN GENOTYPES. TJFC. 2019;24(1):28-3.

Cited By























Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474