Research Article
BibTex RIS Cite
Year 2020, , 181 - 189, 07.12.2020
https://doi.org/10.17557/tjfc.832036

Abstract

References

  • Abdul Jaleel, C., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram and R. Panneerselvam. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces. 60 (1): 7-11. https://doi.org/10.1016/j.colsurfb.2007.05.012.
  • Aliasgharzad, N., M.R. Neyshabouri and G. Salimi. 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean, Biologia. 67: 324-328.
  • Balestrini, R. and E. Lumini. 2018. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 123. PP: 299-304. https://DOI: 10.1016/j.apsoil.2017.09.001.
  • Barea, J.M., R. Azcon and C. Azcon-Aguilar. 2002. Mycorhizosphere interactions to improve plant fitness and soil quality. AntonyVan Leeuwenhoek. 81: 343–351.
  • Bashan, Y., A.K. Kamnev and L.E. de-Bashan. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils. 49: 465–479.
  • Benton, J.J. 2001. Laboratory guild for conducting soil test and plant analysis. 363 P.P. USA. CRC Press. P: 384.
  • Biancitto, V., D. Minerdi, S. Perotto and D. Bonfante. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma. 193:123-137.
  • Dai, A. 2011. Drought under global warming: a review. Wires Clim. Chang. 2. pp: 45-5. DOI: 10.1002/wcc.81.
  • Farooq, M., M. Hussain, H. Kadambot and M. Siddique. 2014. Drought stress in wheat during flowering and grain filling periods. Critical reviews in plant sciences. 33(4): 331-349.https://DOI:10.1080/07352689.2014.875291.
  • Foyer, C.H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133 (1): 21–25. doi: 10.1007/BF00386001 PMID:24425174
  • Gamalero, E., A. Trotta, N. Massa, A. Copetta, A.G. Martinotti and G. Berta. 2004. Impact of two fluorescent pseudomonas and an arbascular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza.14:185-192.
  • Ganbari, M. and Sh. Mollashahi Javan. 2015. Study the response of mung bean genotypes to drought stress by multivariate analysis. International Journal of Agriculture Innovations and Research. 3(4): 2319-1473.
  • Giovannetti, M. and B. Mosse. 1980. An evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84: 489-500.
  • Heidari, M. and A. Golpayegani. 2011. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences. (11): 57-61.
  • Hemeda, H.M. and B.P. Klein. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci. 55(1):184–185.
  • Khan, M.S., A. Ziadi, P.A. Wani and M. Oves. 2008. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental chemistry letters: 7: 1-19.
  • Kim, Y-C., B.R. Glick, Y. Bashan and C.M. Ryu. 2012. Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer Verlag, Berlin & Heidelberg, Germany pp, pp: 383–413.
  • Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. PP: 3-10. In FAO, water report No.22, Deficit Irrigation practices.
  • Lau, J.A. and J.T. Lennon. 2011. Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol. 192: 215–224.
  • Lenoir, I., J. Fontaine and L.H. Sahraoui. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 123: 4-15. https://DOI:10.1016/j.phytochem.2016.01.002.
  • Li, J., B. Meng, H. Chai, X. Yang, W. Song, S. Li, A. Lu, T. Zhang and W. Sun. 2019. Arbuscular Mycorrhizal fungi alleviate drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci. 10: 499. doi: 10.3389/fpls.2019.00499.
  • Lies, L., A. Delteil, Y. Prin and R. Duponnois. 2018. Using Mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In: Meena V. (eds) Role of Rhizospheric microbes in soil. Springer, Singapore. pp: 277-298. https://doi.org/10.1007/978-981-10-8402-7_11
  • Miller, G., N. Susuki, S. Ciftci-Yilmaz and R. Mittler. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33: 453–467.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.
  • Moghadasan, Sh., A. Safipour Afshar and F.S. Nematpour. 2016. The role of Mycorrhiza drought tolerance of marigold (Calendula officinalis L.). Journal of Crop Eco physiology. 9(4): 521-532.
  • Mohamed, O., A.E. Fouad, B. Laila and Q. Ahmed. 2014. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research. 12(3): 763-771.
  • Moradi, M., A. Siadat, K. Khavazi, R. Naseri, A. Maleki and A. Mirzaei. 2011. Effect of application of bio-Fertilizer and phosphorous fertilizer on quantities and qualitative traits of spring wheat. Journal of Crop Eco physiology. 5(18): 51-66.
  • Nori, M.J., A. Mozafari and M. Mirzaee- Haydari. 2016. Evaluation of yield and yield components of lentil (Lens Culiuaris Medik) effected by biofertilizer, nitrogen starter and supplemental irrigation on Kermanshah province, Journal of Agronomy and plant Breeding. 12(1): 1-14.
  • Notor, G. and C.H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.
  • Patterson, B.D., E.A. MacRae and I.B. Ferguson. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem. 139(2):487–492. PMID: 6476384
  • Rahimzadeh, S. and A.R. Pirzad. 2019. Pseudomonas and mycorrhizal fungi co-inoculation alter seed quality of flax under various water supply conditions. Industrial crops and products. 129: 518-524. https://doi.org/10.1016/j.indcrop.2018.12.038
  • Rasool, S., A. Ahmad, T.O. Siddiqi and P. Ahmad. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35: 1039-1050.
  • Roland, F., J.R. Beers and W.S. Irwin. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140.
  • Ruiz-Lozano, J.M. and P. Bonfante. 2001. Intracellular Burkholderia strain has no negative effect on the symbiotic efficiency of the arbuscular mycorrhizal fungus Gigaspora margarita. Plant Growth Regulation. 34: 347–352.
  • Sairam, R.K., K.V. Rao and G.C. Srivastava. 2003. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163:1037-1046.
  • Sardans, J. and J. Peñuelas. 2004. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil. (267): 367-377. https://DOI: 10.1007/s11104-005-0172-8.
  • Steven, W., T. Ritchie, H. Nguyen and A.S. Holaday. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30(1):105-177. Toker, C., and N. Mutlu. 2011. Biology and breeding of food legumes, ed. Pratap, A and J, Kumar. PP: 241-261. CABI.
  • Toker, C., J. Gorham and M.I. Cagirgan. 2009. Certain ion accumulations in barley mutants exposed to drought and salinity. Turkish Journal oF Field Crops 14 (2): 162-169.
  • Zhang, J.X. and M.B. Kirkham. 1994. Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.
  • Zhang, Z.F., J. Zhang, G. Xu, L. Zhou, and Y. Li. 2019. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forests. 50(4): 50- 593. https://doi.org/10.1007/s11056-018-9681-1

EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION

Year 2020, , 181 - 189, 07.12.2020
https://doi.org/10.17557/tjfc.832036

Abstract

Drought is one of the most critical environmental stressors affecting agricultural productivity around the world and it considerably results in yield. Symbiosis interaction between plants and soil micro-organisms are considered to enhance plant tolerance in a/biotic conditions. In this study, the impact of Glomus mosseae, Pseudomonas fluorescens strain 169 and both of them under imposed water stress (flowering and pod filling stages) of mung bean (Vigna radiata (L.) Wilczek) was evaluated in two farm experiments during 2016 and 2017. Eco-physiological parameters have been recorded which showed that drought stress reduced the number of leaves, root colonization and seeds yield of mung bean. Mixed inoculation of G.mosseae and P.fluorescens 169 was more effective in alleviation the harm effects of drought stress. Enzymes assay suggested that co-inoculation of G.mosseae and P.fluorescens 169 was more effective to increase antioxidative defense system like catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) activities. H2O2 contents were increased by water stress both in cutting irrigation at flowering and pod filling stages. In conclusion, plants inoculated with combination of G.mosseae and P.fluorescens 169 had less oxidative damage over control plants.

References

  • Abdul Jaleel, C., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram and R. Panneerselvam. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces. 60 (1): 7-11. https://doi.org/10.1016/j.colsurfb.2007.05.012.
  • Aliasgharzad, N., M.R. Neyshabouri and G. Salimi. 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean, Biologia. 67: 324-328.
  • Balestrini, R. and E. Lumini. 2018. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 123. PP: 299-304. https://DOI: 10.1016/j.apsoil.2017.09.001.
  • Barea, J.M., R. Azcon and C. Azcon-Aguilar. 2002. Mycorhizosphere interactions to improve plant fitness and soil quality. AntonyVan Leeuwenhoek. 81: 343–351.
  • Bashan, Y., A.K. Kamnev and L.E. de-Bashan. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils. 49: 465–479.
  • Benton, J.J. 2001. Laboratory guild for conducting soil test and plant analysis. 363 P.P. USA. CRC Press. P: 384.
  • Biancitto, V., D. Minerdi, S. Perotto and D. Bonfante. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma. 193:123-137.
  • Dai, A. 2011. Drought under global warming: a review. Wires Clim. Chang. 2. pp: 45-5. DOI: 10.1002/wcc.81.
  • Farooq, M., M. Hussain, H. Kadambot and M. Siddique. 2014. Drought stress in wheat during flowering and grain filling periods. Critical reviews in plant sciences. 33(4): 331-349.https://DOI:10.1080/07352689.2014.875291.
  • Foyer, C.H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133 (1): 21–25. doi: 10.1007/BF00386001 PMID:24425174
  • Gamalero, E., A. Trotta, N. Massa, A. Copetta, A.G. Martinotti and G. Berta. 2004. Impact of two fluorescent pseudomonas and an arbascular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza.14:185-192.
  • Ganbari, M. and Sh. Mollashahi Javan. 2015. Study the response of mung bean genotypes to drought stress by multivariate analysis. International Journal of Agriculture Innovations and Research. 3(4): 2319-1473.
  • Giovannetti, M. and B. Mosse. 1980. An evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84: 489-500.
  • Heidari, M. and A. Golpayegani. 2011. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences. (11): 57-61.
  • Hemeda, H.M. and B.P. Klein. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci. 55(1):184–185.
  • Khan, M.S., A. Ziadi, P.A. Wani and M. Oves. 2008. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental chemistry letters: 7: 1-19.
  • Kim, Y-C., B.R. Glick, Y. Bashan and C.M. Ryu. 2012. Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer Verlag, Berlin & Heidelberg, Germany pp, pp: 383–413.
  • Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. PP: 3-10. In FAO, water report No.22, Deficit Irrigation practices.
  • Lau, J.A. and J.T. Lennon. 2011. Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol. 192: 215–224.
  • Lenoir, I., J. Fontaine and L.H. Sahraoui. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 123: 4-15. https://DOI:10.1016/j.phytochem.2016.01.002.
  • Li, J., B. Meng, H. Chai, X. Yang, W. Song, S. Li, A. Lu, T. Zhang and W. Sun. 2019. Arbuscular Mycorrhizal fungi alleviate drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci. 10: 499. doi: 10.3389/fpls.2019.00499.
  • Lies, L., A. Delteil, Y. Prin and R. Duponnois. 2018. Using Mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In: Meena V. (eds) Role of Rhizospheric microbes in soil. Springer, Singapore. pp: 277-298. https://doi.org/10.1007/978-981-10-8402-7_11
  • Miller, G., N. Susuki, S. Ciftci-Yilmaz and R. Mittler. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33: 453–467.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.
  • Moghadasan, Sh., A. Safipour Afshar and F.S. Nematpour. 2016. The role of Mycorrhiza drought tolerance of marigold (Calendula officinalis L.). Journal of Crop Eco physiology. 9(4): 521-532.
  • Mohamed, O., A.E. Fouad, B. Laila and Q. Ahmed. 2014. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research. 12(3): 763-771.
  • Moradi, M., A. Siadat, K. Khavazi, R. Naseri, A. Maleki and A. Mirzaei. 2011. Effect of application of bio-Fertilizer and phosphorous fertilizer on quantities and qualitative traits of spring wheat. Journal of Crop Eco physiology. 5(18): 51-66.
  • Nori, M.J., A. Mozafari and M. Mirzaee- Haydari. 2016. Evaluation of yield and yield components of lentil (Lens Culiuaris Medik) effected by biofertilizer, nitrogen starter and supplemental irrigation on Kermanshah province, Journal of Agronomy and plant Breeding. 12(1): 1-14.
  • Notor, G. and C.H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.
  • Patterson, B.D., E.A. MacRae and I.B. Ferguson. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem. 139(2):487–492. PMID: 6476384
  • Rahimzadeh, S. and A.R. Pirzad. 2019. Pseudomonas and mycorrhizal fungi co-inoculation alter seed quality of flax under various water supply conditions. Industrial crops and products. 129: 518-524. https://doi.org/10.1016/j.indcrop.2018.12.038
  • Rasool, S., A. Ahmad, T.O. Siddiqi and P. Ahmad. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35: 1039-1050.
  • Roland, F., J.R. Beers and W.S. Irwin. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140.
  • Ruiz-Lozano, J.M. and P. Bonfante. 2001. Intracellular Burkholderia strain has no negative effect on the symbiotic efficiency of the arbuscular mycorrhizal fungus Gigaspora margarita. Plant Growth Regulation. 34: 347–352.
  • Sairam, R.K., K.V. Rao and G.C. Srivastava. 2003. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163:1037-1046.
  • Sardans, J. and J. Peñuelas. 2004. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil. (267): 367-377. https://DOI: 10.1007/s11104-005-0172-8.
  • Steven, W., T. Ritchie, H. Nguyen and A.S. Holaday. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30(1):105-177. Toker, C., and N. Mutlu. 2011. Biology and breeding of food legumes, ed. Pratap, A and J, Kumar. PP: 241-261. CABI.
  • Toker, C., J. Gorham and M.I. Cagirgan. 2009. Certain ion accumulations in barley mutants exposed to drought and salinity. Turkish Journal oF Field Crops 14 (2): 162-169.
  • Zhang, J.X. and M.B. Kirkham. 1994. Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.
  • Zhang, Z.F., J. Zhang, G. Xu, L. Zhou, and Y. Li. 2019. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forests. 50(4): 50- 593. https://doi.org/10.1007/s11056-018-9681-1
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mohammad Salehı This is me

Ali Faramarzı This is me

Nasser Mohebalıpour This is me

Manoochehr Farboodı This is me

Jalil Ajallı This is me

Publication Date December 7, 2020
Published in Issue Year 2020

Cite

APA Salehı, M., Faramarzı, A., Mohebalıpour, N., Farboodı, M., et al. (2020). EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION. Turkish Journal Of Field Crops, 25(2), 181-189. https://doi.org/10.17557/tjfc.832036
AMA Salehı M, Faramarzı A, Mohebalıpour N, Farboodı M, Ajallı J. EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION. TJFC. December 2020;25(2):181-189. doi:10.17557/tjfc.832036
Chicago Salehı, Mohammad, Ali Faramarzı, Nasser Mohebalıpour, Manoochehr Farboodı, and Jalil Ajallı. “EFFECTS OF Glomus Mosseae AND Pseudomonas Fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION”. Turkish Journal Of Field Crops 25, no. 2 (December 2020): 181-89. https://doi.org/10.17557/tjfc.832036.
EndNote Salehı M, Faramarzı A, Mohebalıpour N, Farboodı M, Ajallı J (December 1, 2020) EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION. Turkish Journal Of Field Crops 25 2 181–189.
IEEE M. Salehı, A. Faramarzı, N. Mohebalıpour, M. Farboodı, and J. Ajallı, “EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION”, TJFC, vol. 25, no. 2, pp. 181–189, 2020, doi: 10.17557/tjfc.832036.
ISNAD Salehı, Mohammad et al. “EFFECTS OF Glomus Mosseae AND Pseudomonas Fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION”. Turkish Journal Of Field Crops 25/2 (December 2020), 181-189. https://doi.org/10.17557/tjfc.832036.
JAMA Salehı M, Faramarzı A, Mohebalıpour N, Farboodı M, Ajallı J. EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION. TJFC. 2020;25:181–189.
MLA Salehı, Mohammad et al. “EFFECTS OF Glomus Mosseae AND Pseudomonas Fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION”. Turkish Journal Of Field Crops, vol. 25, no. 2, 2020, pp. 181-9, doi:10.17557/tjfc.832036.
Vancouver Salehı M, Faramarzı A, Mohebalıpour N, Farboodı M, Ajallı J. EFFECTS OF Glomus mosseae AND Pseudomonas fluorescens ON ECO-PHYSIOLOGICAL TRAITS AND ANTIOXIDANT PRODUCTION OF MUNG BEAN UNDER DROUGHT CONDITION. TJFC. 2020;25(2):181-9.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474