EVALUATION OF SUNFLOWER HYBRIDS IN MULTI-ENVIRONMENT TRIAL (MET)
Year 2019,
Volume: 24 Issue: 2, 202 - 210, 15.12.2019
Milan Jockovıć
Sandra Cvejıć
Siniša Jocıć
Ana Marjanovıć-jeromela
Dragana Mıladınovıć
Bojan Jockovıć
Vladimir Mıklıč
Velimir Radıć
Abstract
Sunflower has been proposed as a potential crop model for an adaptation to a changing environment and
special attention should be paid to testing hybrids under different environments. Additive main effects and
multiplicative interaction model (AMMI) supplemented with genotype main effects and genotype by
environment interaction effects (GGE) were used for dissection of genotype by environment interaction and
evaluation of hybrids and testing environments. The research included 24 sunflower hybrids grown across
twelve environments. AMMI analysis identified four significant interaction principal components (IPC), while
in GGE biplot the first two IPCs accounted together for 44.59%. Environmental factors contributed the
largest proportion in the total variation of seed yield (67.40%), followed by interaction and genotypes. High
yielding hybrids H1, H14 and H11 showed specific adaptation to environments E10 and E1, respectively. The
average environment coordination (AEC) view of GGE biplot indicated H17 as the most desirable genotype
regarding seed yield. From the results of this study it can be concluded that MET trials are important not just
for evaluation of stability and choosing the most stable genotypes, but also the genotypes that will perform well
in low yielding environments and be able to take advantage of the favourable environmental conditions.
Supporting Institution
Ministry of Education, Science and Technological Development of the Republic of Serbia
Project Number
TR-31025 /114-451-2126/2016-03 / 451-03- 01732/2017-09/3
Thanks
This research is part of the project TR-31025, funded
by the Ministry of Education, Science and Technological
Development of the Republic of Serbia, provincial
Secretariat for Higher Education and Science of
Vojvodina, project 114-451-2126/2016-03 as well as a
bilateral project between Serbia and Germany 451-03-
01732/2017-09/3 and COST Action CA 16212. Special
thanks to Mr. Ilija Radeka and his team for efforts in
carrying out the experiment.
References
- Branković, G., I. Balalić, M. Zorić, V. Miklič, S. Jocić and G.
Šurlan-Momirović. 2012. Characterization of sunflower
testing environments in Serbia. Turkish Journal of
Agriculture and Forestry 36 (3): 275-283.
- Casadebaig, P., E. Mestries and P. Debakey. 2016. A modelbased approach to assist variety evaluation in sunflower
crop. European Journal of Agronomy 81: 92-105.
- Ceccareli, S. 1994. Specific adaptation and breeding for
marginal conditions. Euphytica 77: 205-219.
- da Silveira, L.C.I., V. Kist, T.O.M. de Paula, M.H.P. Barbosa,
L.A. Peternelli and E. Daros. 2013. Ammi analysis to
evaluate the adaptability and phenotypic stability of
sugarcane genotypes. Scientia Agricola 70 (1): 27-32.
- De La Vega, A.J. and S.C. Chapman. 2001. Genotype by
environment interaction and indirect selection for seed yield
in sunflower, II. Three-mode principal component analysis
of oil and biomass yield across environments in Argentina.
Field Crops Research 72 (1): 39-50.
- De La Vega, A.J. and S.C. Chapman. 2006. Defining sunflower
selection strategies for a highly heterogeneous target
population of environments. Crop Sci. 46 (1): 136-144.
- De La Vega, A.J. and S.C. Chapman. 2010. Mega-environment
differences affecting genetic progress for yield and relative
value of component traits. Crop Sci. 50 (2): 574-583.
- Del Gatto, A., C. Mengarelli, E. Foppa Pedretti, D. Duca, S.
Pieri, L. Mangoni, M. Signor, S.A. Raccuia and M.L.
Melilli. 2015. Adaptability of sunflower (Helianthus annuus
L.) high oleic hybrids to different Italian areas for biodiesel
production. Industrial Crops and Products, 75A: 108-117.
- FAO. 2019: http://www.fao.org/faostat/en/#data/QC(accessed
14.04.2019)
- Fox, P.N., J. Crossa and I. Ramagossa. 1997.
Multienvironmental testing and genotype x environment
interaction. In: Statistical Methods for Plant Variety
Evaluation, ed. Kempton, R.A. and Fox, P.N., 117-138,
Chapman & Hall, London.
- Gauch, H.G. and R.W. Zobel. 1997. Identifying megaenvironments and targeting genotypes. Crop Sci. 37 (2): 311-
326.
- Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI
and GGE. Crop Sci. 46 (4): 1488-1500.
- Gauch, H.G. 2013. A Simple Protocol for AMMI Analysis of
Yield Trials. Crop Sci. 53 (5): 1860-1869.
- Hassani, M., B. Heidari, A. Dadkhodaie and P. Stevanato. 2018.
Genotype by environment interaction components
underlying variations in root, sugar and white sugar yield in
sugar beet (Beta vulgaris L.). Euphytica 214 (4): 79.
- Hristov, N., N. Mladenov, V. Đurić, A. Kondic-Spika, A.
Marjanović-Jeromela and D. Simić. 2010. Genotype by
environment interactions in wheat quality breeding programs
in southeast Europe. Euphytica 174: 315–324.
- Jandong, E.A., M.I. Uguru and B.C. Oyiga. 2011. Determination
of stability of Soybean (Glycine max) genotypes across
diverse soil pH levels using GGE Biplot analysis. Journal of
applied Biosciences 43: 2924-2941.
- Kaya, Y. 2014. Sunflower Production in Balkan Region: Current
Situation and Future prospects. Agriculture and Forestry 60
(4): 95-101.
- Marinković, R., M. Jocković, A. Marjanović-Jeromela, S. Jocić,
M. Ćirić, I. Balalić and Z. Sakač. 2011. Genotype by
environment interactions for seed yield and oil content in
sunflower (H. annuus L.) using AMMI model. Helia 34(54):79-88.
- Marjanović-Jeromela, A., R. Marinković, A. Mijić, M.
Jankulovska, Z. Zdunić and N. Nagl. 2008. Oil Yield
Stability of Winter Rapeseed (Brassica napus L.) Genotypes.
Agriculturae Conspectus Scientificus 73 (4): 217-220.
- Marjanović-Jeromela, A., N. Nagl, J. Gvozdanović-Varga, N.
Hristov, A. Kondić-Špika, M. Vasić and R. Marinković.
2011. Genotype by environment interaction for seed yield
per plant in rapeseed using AMMI model. Pesquisa
Agropecuária Brasileira 46 (2): 174-181.
- Mijić, A., I. Liović, A. Sudarić, D. Gadžo, Z. Jovović, M.
Jankulovska, A. Markulj-Kulundžić and T. Duvnjak. 2017.
The effect of environment on the phenotypic expression of
grain yield, oil content and oil yield in sunflower hybrids.
Agriculture and Forestry 63 (1): 309-318.
- Moghaddam, M.J. and S.S. Pourdad. 2011. Genotype x
environment interactions and simultaneous selection for high
oil yield and stability in rainfed warm areas rapeseed
(Brassica napus L.) from Iran. Euphytica 180 (3): 321–335.
- Mohammadi, R. and A. Amri. 2013. Genotype x environment
interaction and genetic improvement for yield and yield
stability of rainfed durum wheat in Iran. Euphytica 192 (2):
227-249.
- Nowosad, K., A. Liersch, W. Poplawska and J. Bocianowski.
2016. Genotype by environment interaction for seed yield in
rapeseed (Brassica napus L.) using additive main effects and
multiplicative interaction model. Euphytica 208 (1): 187-194.
- Oliveira, E.J., J.P.X. Freitas and O.N. Jesus. 2014. AMMI
analysis of the adaptability and yield stability of yellow
passion fruit varieties. Scientia Agricola 71 (2): 139-145.
- Piepho, H.P. 1998. Methods for comparing the yield stability of
cropping system – a review. Journal of Agronomy and Crop
Science 190: 193-21.
- Radanović, A., D. Miladinović, S. Cvejić, M. Jocković and S.
Jocić. 2018. Sunflower Genetics from Ancestors to Modern
Hybrids - a review. Genes 9 (11): 1-19.
- Romay, M.C., R.A. Malvar, L. Campo, A. Alvarez, J. MorenoGonzales, A. Ordas and P. Revilla. 2010. Climatic and
Genotypic Effects for Grain Yield in Maize under Stress
Conditions. Crop Sci. 50 (1): 51-58.
- Seiler, G. and C.C. Jan. 2010. Basic information. In: Genetics,
genomics and breeding of sunflower, ed. Hu, J. Seiler, G.
and Kole, C., 1-40, Enfield, New Hampshire, USA, CRC
Press.
- Solonechnyi, P., N. Vasko, A. Naumov, O. Solonechnaya, O.
Vazhenina, O. Bondareva and Y. Logvinenko. 2015. GGE
biplot analysis of genotype by environment interaction of
spring barley varieties. Zemdirbyste-Agriculture 102 (4):
431-436.
- Stojaković, M., B. Mitrović, M. Zorić, M. Ivanović, D.
Stanisavljević, A. Nastasić and D. Dodig. 2015. Grouping
pattern of maize test locations and its impact on hybrid
zoning. Euphytica 204 (2): 419-431.
- Temesgen, A., K. Mammo and L. Dagnachew. 2014. Genotype
by Environment Interaction (G x E) and Grain Yield
Stability Analysis of Ethiopian Linseed and Niger Seed
Varieties. Journal of Applied Biosciences 80: 7093-7101.
- Yan, W. 2001. GGE biplot: a windows application for graphical
analysis of multi environment trial data and other types of
two-way data. Agron J. 93: 1–11.
- Yan, W. and C. Rajcan. 2002. Biplot analysis of test sites and
trait relations of Soybean in Ontario. Crop Sci. 42: 11–20.
- Yan, W. and M.S. Kang. 2003. GGE biplot analysis: A graphical
tool for breeders, geneticists and agronomists. CRC Press,
Boca Raton, FL, USA, p. 1-271.
- Yan, W. and N.A. Tinker. 2006. Biplot analysis of multienvironment trial data principles and application. Canadian
Journal of Plant Science, 86(3): 623–645.
- Yan, W., M.S. Kang, B. Ma, S. Woods and P.L. Cornelius. 2007.
GGE Biplot vs. AMMI analysis of genotype-by-environment
data. Crop Sci. 47: 643–655.
- Yan, W. 2014. Crop variety trials: data management and
analysis. Wiley-Blackwell, New York, 360 p.
- Zobel, R.W., M.J. Wright and H.G. Gauch. 1988. Statistical
analysis of yield trial. Agron J. 80: 388–393.
Year 2019,
Volume: 24 Issue: 2, 202 - 210, 15.12.2019
Milan Jockovıć
Sandra Cvejıć
Siniša Jocıć
Ana Marjanovıć-jeromela
Dragana Mıladınovıć
Bojan Jockovıć
Vladimir Mıklıč
Velimir Radıć
Project Number
TR-31025 /114-451-2126/2016-03 / 451-03- 01732/2017-09/3
References
- Branković, G., I. Balalić, M. Zorić, V. Miklič, S. Jocić and G.
Šurlan-Momirović. 2012. Characterization of sunflower
testing environments in Serbia. Turkish Journal of
Agriculture and Forestry 36 (3): 275-283.
- Casadebaig, P., E. Mestries and P. Debakey. 2016. A modelbased approach to assist variety evaluation in sunflower
crop. European Journal of Agronomy 81: 92-105.
- Ceccareli, S. 1994. Specific adaptation and breeding for
marginal conditions. Euphytica 77: 205-219.
- da Silveira, L.C.I., V. Kist, T.O.M. de Paula, M.H.P. Barbosa,
L.A. Peternelli and E. Daros. 2013. Ammi analysis to
evaluate the adaptability and phenotypic stability of
sugarcane genotypes. Scientia Agricola 70 (1): 27-32.
- De La Vega, A.J. and S.C. Chapman. 2001. Genotype by
environment interaction and indirect selection for seed yield
in sunflower, II. Three-mode principal component analysis
of oil and biomass yield across environments in Argentina.
Field Crops Research 72 (1): 39-50.
- De La Vega, A.J. and S.C. Chapman. 2006. Defining sunflower
selection strategies for a highly heterogeneous target
population of environments. Crop Sci. 46 (1): 136-144.
- De La Vega, A.J. and S.C. Chapman. 2010. Mega-environment
differences affecting genetic progress for yield and relative
value of component traits. Crop Sci. 50 (2): 574-583.
- Del Gatto, A., C. Mengarelli, E. Foppa Pedretti, D. Duca, S.
Pieri, L. Mangoni, M. Signor, S.A. Raccuia and M.L.
Melilli. 2015. Adaptability of sunflower (Helianthus annuus
L.) high oleic hybrids to different Italian areas for biodiesel
production. Industrial Crops and Products, 75A: 108-117.
- FAO. 2019: http://www.fao.org/faostat/en/#data/QC(accessed
14.04.2019)
- Fox, P.N., J. Crossa and I. Ramagossa. 1997.
Multienvironmental testing and genotype x environment
interaction. In: Statistical Methods for Plant Variety
Evaluation, ed. Kempton, R.A. and Fox, P.N., 117-138,
Chapman & Hall, London.
- Gauch, H.G. and R.W. Zobel. 1997. Identifying megaenvironments and targeting genotypes. Crop Sci. 37 (2): 311-
326.
- Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI
and GGE. Crop Sci. 46 (4): 1488-1500.
- Gauch, H.G. 2013. A Simple Protocol for AMMI Analysis of
Yield Trials. Crop Sci. 53 (5): 1860-1869.
- Hassani, M., B. Heidari, A. Dadkhodaie and P. Stevanato. 2018.
Genotype by environment interaction components
underlying variations in root, sugar and white sugar yield in
sugar beet (Beta vulgaris L.). Euphytica 214 (4): 79.
- Hristov, N., N. Mladenov, V. Đurić, A. Kondic-Spika, A.
Marjanović-Jeromela and D. Simić. 2010. Genotype by
environment interactions in wheat quality breeding programs
in southeast Europe. Euphytica 174: 315–324.
- Jandong, E.A., M.I. Uguru and B.C. Oyiga. 2011. Determination
of stability of Soybean (Glycine max) genotypes across
diverse soil pH levels using GGE Biplot analysis. Journal of
applied Biosciences 43: 2924-2941.
- Kaya, Y. 2014. Sunflower Production in Balkan Region: Current
Situation and Future prospects. Agriculture and Forestry 60
(4): 95-101.
- Marinković, R., M. Jocković, A. Marjanović-Jeromela, S. Jocić,
M. Ćirić, I. Balalić and Z. Sakač. 2011. Genotype by
environment interactions for seed yield and oil content in
sunflower (H. annuus L.) using AMMI model. Helia 34(54):79-88.
- Marjanović-Jeromela, A., R. Marinković, A. Mijić, M.
Jankulovska, Z. Zdunić and N. Nagl. 2008. Oil Yield
Stability of Winter Rapeseed (Brassica napus L.) Genotypes.
Agriculturae Conspectus Scientificus 73 (4): 217-220.
- Marjanović-Jeromela, A., N. Nagl, J. Gvozdanović-Varga, N.
Hristov, A. Kondić-Špika, M. Vasić and R. Marinković.
2011. Genotype by environment interaction for seed yield
per plant in rapeseed using AMMI model. Pesquisa
Agropecuária Brasileira 46 (2): 174-181.
- Mijić, A., I. Liović, A. Sudarić, D. Gadžo, Z. Jovović, M.
Jankulovska, A. Markulj-Kulundžić and T. Duvnjak. 2017.
The effect of environment on the phenotypic expression of
grain yield, oil content and oil yield in sunflower hybrids.
Agriculture and Forestry 63 (1): 309-318.
- Moghaddam, M.J. and S.S. Pourdad. 2011. Genotype x
environment interactions and simultaneous selection for high
oil yield and stability in rainfed warm areas rapeseed
(Brassica napus L.) from Iran. Euphytica 180 (3): 321–335.
- Mohammadi, R. and A. Amri. 2013. Genotype x environment
interaction and genetic improvement for yield and yield
stability of rainfed durum wheat in Iran. Euphytica 192 (2):
227-249.
- Nowosad, K., A. Liersch, W. Poplawska and J. Bocianowski.
2016. Genotype by environment interaction for seed yield in
rapeseed (Brassica napus L.) using additive main effects and
multiplicative interaction model. Euphytica 208 (1): 187-194.
- Oliveira, E.J., J.P.X. Freitas and O.N. Jesus. 2014. AMMI
analysis of the adaptability and yield stability of yellow
passion fruit varieties. Scientia Agricola 71 (2): 139-145.
- Piepho, H.P. 1998. Methods for comparing the yield stability of
cropping system – a review. Journal of Agronomy and Crop
Science 190: 193-21.
- Radanović, A., D. Miladinović, S. Cvejić, M. Jocković and S.
Jocić. 2018. Sunflower Genetics from Ancestors to Modern
Hybrids - a review. Genes 9 (11): 1-19.
- Romay, M.C., R.A. Malvar, L. Campo, A. Alvarez, J. MorenoGonzales, A. Ordas and P. Revilla. 2010. Climatic and
Genotypic Effects for Grain Yield in Maize under Stress
Conditions. Crop Sci. 50 (1): 51-58.
- Seiler, G. and C.C. Jan. 2010. Basic information. In: Genetics,
genomics and breeding of sunflower, ed. Hu, J. Seiler, G.
and Kole, C., 1-40, Enfield, New Hampshire, USA, CRC
Press.
- Solonechnyi, P., N. Vasko, A. Naumov, O. Solonechnaya, O.
Vazhenina, O. Bondareva and Y. Logvinenko. 2015. GGE
biplot analysis of genotype by environment interaction of
spring barley varieties. Zemdirbyste-Agriculture 102 (4):
431-436.
- Stojaković, M., B. Mitrović, M. Zorić, M. Ivanović, D.
Stanisavljević, A. Nastasić and D. Dodig. 2015. Grouping
pattern of maize test locations and its impact on hybrid
zoning. Euphytica 204 (2): 419-431.
- Temesgen, A., K. Mammo and L. Dagnachew. 2014. Genotype
by Environment Interaction (G x E) and Grain Yield
Stability Analysis of Ethiopian Linseed and Niger Seed
Varieties. Journal of Applied Biosciences 80: 7093-7101.
- Yan, W. 2001. GGE biplot: a windows application for graphical
analysis of multi environment trial data and other types of
two-way data. Agron J. 93: 1–11.
- Yan, W. and C. Rajcan. 2002. Biplot analysis of test sites and
trait relations of Soybean in Ontario. Crop Sci. 42: 11–20.
- Yan, W. and M.S. Kang. 2003. GGE biplot analysis: A graphical
tool for breeders, geneticists and agronomists. CRC Press,
Boca Raton, FL, USA, p. 1-271.
- Yan, W. and N.A. Tinker. 2006. Biplot analysis of multienvironment trial data principles and application. Canadian
Journal of Plant Science, 86(3): 623–645.
- Yan, W., M.S. Kang, B. Ma, S. Woods and P.L. Cornelius. 2007.
GGE Biplot vs. AMMI analysis of genotype-by-environment
data. Crop Sci. 47: 643–655.
- Yan, W. 2014. Crop variety trials: data management and
analysis. Wiley-Blackwell, New York, 360 p.
- Zobel, R.W., M.J. Wright and H.G. Gauch. 1988. Statistical
analysis of yield trial. Agron J. 80: 388–393.