Research Article
BibTex RIS Cite

FORAGE YIELD AND QUALITY OF QUINOA (Chenopodium quinoa Willd.) GENOTYPES HARVESTED AT DIFFERENT CUTTING STAGES UNDER MEDITERRANEAN CONDITIONS

Year 2021, Volume: 26 Issue: 2, 202 - 209, 27.12.2021
https://doi.org/10.17557/tjfc.986893

Abstract

Genotype choosing and cutting stage are very significant to obtained better forage yield and quality. However, researches about forage production from quinoa plant genotypes harvested at different cutting stages are not enough in Mediterranean conditions. This study was conducted to determine the forage yield and quality of five different quinoa genotypes (Red head, Cherry vanilla, French vanilla, Mint vanilla and Titicaca) at three different cutting stages (flowering, milky and dough). The experiment was laid out in split plot of randomized complete blocks with three replications in 2019 and 2020 years. To evaluate the forage yield and quality of different quinoa genotypes harvested at different cutting stages, plant height, stem diameter, dry forage yield, dry matter content, water soluble carbohydrate, neutral detergent fiber, acid detergent fiber, acid detergent lignin, condensed tannins, ether extract, crude protein, crude ash, organic matter, non-fiber carbohydrate and relative feed value properties were investigated. As a result of the research, it was determined that it is appropriate to harvest quinoa as a roughage source at the dough stage, and that Mint vanilla genotype is the most productive genotype.

Supporting Institution

Hatay Mustafa Kemal University

Project Number

19.M.004

Thanks

This study was supported by Hatay Mustafa Kemal University, Department of Scientific Research Projects with the project number: 19.M.004. Also, Plant material used in this study was obtained from Dr. Suleyman TEMEL from Igdir University. We thank to Hatay Mustafa Kemal University and Dr. Suleyman TEMEL.

References

  • AOAC, 2019. 21st edition. Official Methods of Analysis 2019 AOAC International.
  • Atis, I., O. Konuskan, M. Duru, H. Gozubenli and S. Yilmaz. 2012. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. International Journal of Agriculture and Biology 14(6): 879-886.
  • Asher, A., S. Galili, T. Whitney and L. Rubinovich. 2020. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dualpurpose crop for grain production and livestock feed. Scientia Horticulturae 272: 109534.
  • Bañuelos, T.O. 1993. Evaluación forrajera de 18 variedades de quinua (Chenopodium quinoa Willd.) bajo condiciones de riego y temporal en Montecillo. (Doctoral Dissertation, Tesis De Licenciatura Universidad Autónoma Chapingo, Zonas Aridas).
  • Bazile, D. and F. Baudron. 2015. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: State of the Art Report of Quinoa in the World in 2013, ed. Bazile, D., D. Bertero and C. Nieto, 42-55, FAO & CIRAD, Rome.
  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
  • Dumanoglu, Z. D. Isik and H. Geren. 2016. Effect of different salt (NaCl) concentrations on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.). Journal of Agricultural Faculty of Ege University 53(2): 153-159.
  • Fuentes, F. and A. Bhargava. 2011. Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197: 124-134.
  • Geren, H. 2015. Effect of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turkish Journal of Field Crops 20: 59-64.
  • Geren, H. and E. Gure. 2017. A preliminary study on the effect of different N and P levels on the grain yield and other yield components of quinoa (Chenopodium quinoa Willd.). Journal of Agricultural Faculty of Ege University 54(1): 1-8.
  • Geren, H. Y.T. Kavut and M. Altinbas. 2015. Effect of different row spacings on the grain yield and some yield characteristics of quinoa (Chenopodium quinoa Willd.) under Bornova ecological conditions. Journal of Agricultural Faculty of Ege University 52(1): 69-78.
  • Geren, H. Y.T. Kavut, G. Demiroglu-Topcu, S. Ekren and D. Istipliler. 2014. Effects of different sowing dates on the grain yield and some yield components of quinoa (Chenopodium quinoa Wild.) grown under Mediterranean climatic conditions. Journal of Agricultural Faculty of Ege University 51(3): 297-305.
  • Kamalak, A. 2007. Feed additives and some chemical treatment to decrease the negative effect of condensed tannin. KSU Journal of Science and Engineering (10(2): 144-150.
  • Kaplan, M., K. Kara, A. Unlukara, H. Kale, S. Buyukkilic-Beyzi, I.S. Varol, M. Kizilsimsek and A. Kamalak. 2019. Water deficit and nitrogen affects yield and feed value of sorghum sudangrass silage. Agricultural Water Management 218: 30-36.
  • Kaya, E. and S. Kizil-Aydemir. 2020. Determining the forage yield, quality and nutritional element contents of quinoa cultivars and correlation analysis on these parameters. Pakistan Journal of Agricultural Sciences 57: 311-317.
  • Kir, A.E. and S. Temel. 2016. Determination of seed yield and some agronomical characteristics of different quinoa (Chenopodium quinoa Willd.) variety and populations under dry conditions of Igdir plain. Journal of the Institute of Science and Technology 6(4): 145-154.
  • Li, S., Y. Yang, Q. Zhang, N. Liu, Q. Xu and L. Hu. 2018. Differential physiological and metabolic response to low temperature in two zoysia grass genotypes native to high and low latitude. PLoS ONE. 13: e0198885.
  • Liu, D., X. Zhou, P. Zhao, M. Gao, H. Han and H. Hu. 2013. Effects of increasing non-fiber carbohydrate to neutral detergent fiber ratio on rumen fermentation and microbiota in goats. Journal of Integrative Agriculture 12(2): 319-326.
  • Liu, M., M. Yang and H. Yang. 2020. Biomass production and nutritional characteristics of quinoa subjected to cutting and sowing date in the mid-western China. Grassland Science 00: 1-10.
  • Makkar, H.P.S., G. Gamble and K. Becker. 1999. Limitation of the butanol-hydrocloric acid-iron assay for bound condensed tannins. Food Chemistry 66: 129-133.
  • NRC, 2001. Nutrient requirements for cattle. (7th rev. ed.), Natl. Acad. Sci., Washington, DC.
  • Peiretti, P.G., F. Gai and S. Tassone. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183: 56-61.
  • Rosero, O., D. Rosero and D. Lukešová. 2010. Determination of the capacities of farmers to adopt quinoa grain (Chenopodium quinoa willd) as potential feedstuff. Agricultura Tropica et Subtropica 43: 308-315.
  • Shah, S.S., L. Shi, Z. Li, G. Ren, B. Zhou and P. Qin. 2020. Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy 10: 1908.
  • Tan, M. and S. Temel. 2017. Determination of dry matter yield and some properties of different quinoa genotypes grown in Erzurum and Igdir conditions. Igdir Univ Journal of Institute Science & Technology 7: 257-263.
  • Tan, M. and S. Temel. 2019. Quinoa in Every Aspect: Importance, Use and Cultivation. Ankara, Turkey: IKSAD Publishing House.
  • Tan, M. and S. Temel. 2020. Determination of roughage production of different quinoa (Chenopodium quinoa Willd.) varieties in dry conditions of Eastern Anatolia. International Journal of Agriculture and Wildlife Science 6(3): 554-561.
  • Temel, S. and M. Tan. 2020. Evaluation of different quinoa varieties grown in dry conditions in terms of roughage quality properties. International Journal of Agriculture and Wildlife Science 6(2): 347-354.
  • Temel, S. and N. Surgun. 2019. The effect of different nitrogen and phosphorus doses on hay yield and quality of quinoa. Igdir Univ Journal of Institute Science & Technology 9(3): 1785-1796.
  • Temel, S. and S. Yolcu. 2020. The effect of different sowing time and harvesting stages on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops 25(1): 41-49.
  • Uke, O., H. Kale, M. Kaplan and A. Kamalak, 2017. Effects of maturity stages on hay yield and quality, gas and methane production of quinoa (Chenopodium quinoa Willd.). KSU Journal of Natural Sciences 20(1): 42–46.
  • Van Dyke, N.J. and P.N. Anderson. 2002. Interpreting a forage analysis. Alabama Cooperative Extension, Circular ANR-890.
  • Van Soest, P.J., J.D. Robertson and B.A. Lewis. 1991. Methods for diatery fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.
  • Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., L. Puente and E.A. Martínez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90: 2541-2547.
  • Wei, Y.M., F.R. Yang, W.Y. Liu, J. Huang, and Q. Jin. 2018. Regulation of nutrient accumulation and distribution in quinoa at different growth stages. Pratacultural Science 35(7): 1720-1727. (In chinese with English abstract).
  • Zhang, X., E.H. Ervin and A.J. Labranche. 2006. Metabolic defense responses of seeded bermudagrass during acclimation to freezing stress. Crop Science 46: 2598-2605.
Year 2021, Volume: 26 Issue: 2, 202 - 209, 27.12.2021
https://doi.org/10.17557/tjfc.986893

Abstract

Project Number

19.M.004

References

  • AOAC, 2019. 21st edition. Official Methods of Analysis 2019 AOAC International.
  • Atis, I., O. Konuskan, M. Duru, H. Gozubenli and S. Yilmaz. 2012. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars. International Journal of Agriculture and Biology 14(6): 879-886.
  • Asher, A., S. Galili, T. Whitney and L. Rubinovich. 2020. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dualpurpose crop for grain production and livestock feed. Scientia Horticulturae 272: 109534.
  • Bañuelos, T.O. 1993. Evaluación forrajera de 18 variedades de quinua (Chenopodium quinoa Willd.) bajo condiciones de riego y temporal en Montecillo. (Doctoral Dissertation, Tesis De Licenciatura Universidad Autónoma Chapingo, Zonas Aridas).
  • Bazile, D. and F. Baudron. 2015. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: State of the Art Report of Quinoa in the World in 2013, ed. Bazile, D., D. Bertero and C. Nieto, 42-55, FAO & CIRAD, Rome.
  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
  • Dumanoglu, Z. D. Isik and H. Geren. 2016. Effect of different salt (NaCl) concentrations on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.). Journal of Agricultural Faculty of Ege University 53(2): 153-159.
  • Fuentes, F. and A. Bhargava. 2011. Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197: 124-134.
  • Geren, H. 2015. Effect of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turkish Journal of Field Crops 20: 59-64.
  • Geren, H. and E. Gure. 2017. A preliminary study on the effect of different N and P levels on the grain yield and other yield components of quinoa (Chenopodium quinoa Willd.). Journal of Agricultural Faculty of Ege University 54(1): 1-8.
  • Geren, H. Y.T. Kavut and M. Altinbas. 2015. Effect of different row spacings on the grain yield and some yield characteristics of quinoa (Chenopodium quinoa Willd.) under Bornova ecological conditions. Journal of Agricultural Faculty of Ege University 52(1): 69-78.
  • Geren, H. Y.T. Kavut, G. Demiroglu-Topcu, S. Ekren and D. Istipliler. 2014. Effects of different sowing dates on the grain yield and some yield components of quinoa (Chenopodium quinoa Wild.) grown under Mediterranean climatic conditions. Journal of Agricultural Faculty of Ege University 51(3): 297-305.
  • Kamalak, A. 2007. Feed additives and some chemical treatment to decrease the negative effect of condensed tannin. KSU Journal of Science and Engineering (10(2): 144-150.
  • Kaplan, M., K. Kara, A. Unlukara, H. Kale, S. Buyukkilic-Beyzi, I.S. Varol, M. Kizilsimsek and A. Kamalak. 2019. Water deficit and nitrogen affects yield and feed value of sorghum sudangrass silage. Agricultural Water Management 218: 30-36.
  • Kaya, E. and S. Kizil-Aydemir. 2020. Determining the forage yield, quality and nutritional element contents of quinoa cultivars and correlation analysis on these parameters. Pakistan Journal of Agricultural Sciences 57: 311-317.
  • Kir, A.E. and S. Temel. 2016. Determination of seed yield and some agronomical characteristics of different quinoa (Chenopodium quinoa Willd.) variety and populations under dry conditions of Igdir plain. Journal of the Institute of Science and Technology 6(4): 145-154.
  • Li, S., Y. Yang, Q. Zhang, N. Liu, Q. Xu and L. Hu. 2018. Differential physiological and metabolic response to low temperature in two zoysia grass genotypes native to high and low latitude. PLoS ONE. 13: e0198885.
  • Liu, D., X. Zhou, P. Zhao, M. Gao, H. Han and H. Hu. 2013. Effects of increasing non-fiber carbohydrate to neutral detergent fiber ratio on rumen fermentation and microbiota in goats. Journal of Integrative Agriculture 12(2): 319-326.
  • Liu, M., M. Yang and H. Yang. 2020. Biomass production and nutritional characteristics of quinoa subjected to cutting and sowing date in the mid-western China. Grassland Science 00: 1-10.
  • Makkar, H.P.S., G. Gamble and K. Becker. 1999. Limitation of the butanol-hydrocloric acid-iron assay for bound condensed tannins. Food Chemistry 66: 129-133.
  • NRC, 2001. Nutrient requirements for cattle. (7th rev. ed.), Natl. Acad. Sci., Washington, DC.
  • Peiretti, P.G., F. Gai and S. Tassone. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183: 56-61.
  • Rosero, O., D. Rosero and D. Lukešová. 2010. Determination of the capacities of farmers to adopt quinoa grain (Chenopodium quinoa willd) as potential feedstuff. Agricultura Tropica et Subtropica 43: 308-315.
  • Shah, S.S., L. Shi, Z. Li, G. Ren, B. Zhou and P. Qin. 2020. Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy 10: 1908.
  • Tan, M. and S. Temel. 2017. Determination of dry matter yield and some properties of different quinoa genotypes grown in Erzurum and Igdir conditions. Igdir Univ Journal of Institute Science & Technology 7: 257-263.
  • Tan, M. and S. Temel. 2019. Quinoa in Every Aspect: Importance, Use and Cultivation. Ankara, Turkey: IKSAD Publishing House.
  • Tan, M. and S. Temel. 2020. Determination of roughage production of different quinoa (Chenopodium quinoa Willd.) varieties in dry conditions of Eastern Anatolia. International Journal of Agriculture and Wildlife Science 6(3): 554-561.
  • Temel, S. and M. Tan. 2020. Evaluation of different quinoa varieties grown in dry conditions in terms of roughage quality properties. International Journal of Agriculture and Wildlife Science 6(2): 347-354.
  • Temel, S. and N. Surgun. 2019. The effect of different nitrogen and phosphorus doses on hay yield and quality of quinoa. Igdir Univ Journal of Institute Science & Technology 9(3): 1785-1796.
  • Temel, S. and S. Yolcu. 2020. The effect of different sowing time and harvesting stages on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops 25(1): 41-49.
  • Uke, O., H. Kale, M. Kaplan and A. Kamalak, 2017. Effects of maturity stages on hay yield and quality, gas and methane production of quinoa (Chenopodium quinoa Willd.). KSU Journal of Natural Sciences 20(1): 42–46.
  • Van Dyke, N.J. and P.N. Anderson. 2002. Interpreting a forage analysis. Alabama Cooperative Extension, Circular ANR-890.
  • Van Soest, P.J., J.D. Robertson and B.A. Lewis. 1991. Methods for diatery fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.
  • Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., L. Puente and E.A. Martínez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90: 2541-2547.
  • Wei, Y.M., F.R. Yang, W.Y. Liu, J. Huang, and Q. Jin. 2018. Regulation of nutrient accumulation and distribution in quinoa at different growth stages. Pratacultural Science 35(7): 1720-1727. (In chinese with English abstract).
  • Zhang, X., E.H. Ervin and A.J. Labranche. 2006. Metabolic defense responses of seeded bermudagrass during acclimation to freezing stress. Crop Science 46: 2598-2605.
There are 36 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Şaban Yılmaz 0000-0003-2558-5802

İbrahim Ertekin 0000-0003-1393-8084

İbrahim Atış 0000-0002-0510-9625

Project Number 19.M.004
Publication Date December 27, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Yılmaz, Ş., Ertekin, İ., & Atış, İ. (2021). FORAGE YIELD AND QUALITY OF QUINOA (Chenopodium quinoa Willd.) GENOTYPES HARVESTED AT DIFFERENT CUTTING STAGES UNDER MEDITERRANEAN CONDITIONS. Turkish Journal Of Field Crops, 26(2), 202-209. https://doi.org/10.17557/tjfc.986893

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474