Research Article
BibTex RIS Cite
Year 2023, , 20 - 26, 30.06.2023
https://doi.org/10.47000/tjmcs.1171285

Abstract

References

  • Alefeld, G., Herzberger, J., Einführung in die Intervallrechnung, Mannheim: Bibliographhisches Institut., 1974.
  • Alefeld, G., Herzberger, J., Introduction to Interval Computations, New York: Academic Press., 1983.
  • Aseev, S.M., Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, 2(1969), 23–52.
  • Aubin, J.P., Frankowska, H., Set-Valued Analysis, Boston: Birkhauser, 1990.
  • Bozkurt, H., Yılmaz, Y., Some new results on inner product quasilinear spaces, Cogents Mathematics, (2016).
  • Ganesan, K., On properties of interval matrices, International Journal of Computational and Mathematical Sciences 1(2)(2007).
  • Hansen, E.R., Global Optimization Using Interval Analysis, New York: Marcel Dekkar Inc., 1992.
  • Kulisch, U., Grundzüge der Intervallrechnung, in: Jahrburch Überblicke Mathematik, Mannheim: Bibliographhisches Institut., 1969.
  • Levent, H., Yılmaz, Y., An application: Representations of some systems on non-deterministic EEG signals, J. Biostat Biometric, App., 2(2017), 101.
  • Moore, R.E., Kearfott, R.B., Cloud, M.J., Introduction to Interval Analysis, Philadelphia: SIAM, 2009.
  • Rohn, J., Interval matrices: Singularity and real eiganvalues, SIAM Journal of Matrix Analysis and Applications, 1(1993), 82–91.
  • Yılmaz, Y., Levent, H., Inner-product quasilinear spaces with applications in signal processing, Advanced Studies: Euro-Tbilisi Mathematical Journal, 14(2021), 4.
  • Yılmaz, Y., Bozkurt, H., Çakan, S., On orthonormal sets in inner product quasilinear spaces, Creat. Math. Inform, 25(2016), 229–239.

Complex Interval Matrix and Its Some Properties

Year 2023, , 20 - 26, 30.06.2023
https://doi.org/10.47000/tjmcs.1171285

Abstract

In this paper, we present the notion of complex interval matrix. Further, we discuss the algebraic structure of the set of all $(m\times n)$ complex interval matrices by using tools of quasilinear functional analysis. Finally, we put a norm on the space of the complex interval matrices and we calculate the norm of a complex interval matrices.

References

  • Alefeld, G., Herzberger, J., Einführung in die Intervallrechnung, Mannheim: Bibliographhisches Institut., 1974.
  • Alefeld, G., Herzberger, J., Introduction to Interval Computations, New York: Academic Press., 1983.
  • Aseev, S.M., Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, 2(1969), 23–52.
  • Aubin, J.P., Frankowska, H., Set-Valued Analysis, Boston: Birkhauser, 1990.
  • Bozkurt, H., Yılmaz, Y., Some new results on inner product quasilinear spaces, Cogents Mathematics, (2016).
  • Ganesan, K., On properties of interval matrices, International Journal of Computational and Mathematical Sciences 1(2)(2007).
  • Hansen, E.R., Global Optimization Using Interval Analysis, New York: Marcel Dekkar Inc., 1992.
  • Kulisch, U., Grundzüge der Intervallrechnung, in: Jahrburch Überblicke Mathematik, Mannheim: Bibliographhisches Institut., 1969.
  • Levent, H., Yılmaz, Y., An application: Representations of some systems on non-deterministic EEG signals, J. Biostat Biometric, App., 2(2017), 101.
  • Moore, R.E., Kearfott, R.B., Cloud, M.J., Introduction to Interval Analysis, Philadelphia: SIAM, 2009.
  • Rohn, J., Interval matrices: Singularity and real eiganvalues, SIAM Journal of Matrix Analysis and Applications, 1(1993), 82–91.
  • Yılmaz, Y., Levent, H., Inner-product quasilinear spaces with applications in signal processing, Advanced Studies: Euro-Tbilisi Mathematical Journal, 14(2021), 4.
  • Yılmaz, Y., Bozkurt, H., Çakan, S., On orthonormal sets in inner product quasilinear spaces, Creat. Math. Inform, 25(2016), 229–239.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Halise Levent 0000-0002-7139-361X

Yılmaz Yılmaz 0000-0003-1484-782X

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Levent, H., & Yılmaz, Y. (2023). Complex Interval Matrix and Its Some Properties. Turkish Journal of Mathematics and Computer Science, 15(1), 20-26. https://doi.org/10.47000/tjmcs.1171285
AMA Levent H, Yılmaz Y. Complex Interval Matrix and Its Some Properties. TJMCS. June 2023;15(1):20-26. doi:10.47000/tjmcs.1171285
Chicago Levent, Halise, and Yılmaz Yılmaz. “Complex Interval Matrix and Its Some Properties”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 20-26. https://doi.org/10.47000/tjmcs.1171285.
EndNote Levent H, Yılmaz Y (June 1, 2023) Complex Interval Matrix and Its Some Properties. Turkish Journal of Mathematics and Computer Science 15 1 20–26.
IEEE H. Levent and Y. Yılmaz, “Complex Interval Matrix and Its Some Properties”, TJMCS, vol. 15, no. 1, pp. 20–26, 2023, doi: 10.47000/tjmcs.1171285.
ISNAD Levent, Halise - Yılmaz, Yılmaz. “Complex Interval Matrix and Its Some Properties”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 20-26. https://doi.org/10.47000/tjmcs.1171285.
JAMA Levent H, Yılmaz Y. Complex Interval Matrix and Its Some Properties. TJMCS. 2023;15:20–26.
MLA Levent, Halise and Yılmaz Yılmaz. “Complex Interval Matrix and Its Some Properties”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 20-26, doi:10.47000/tjmcs.1171285.
Vancouver Levent H, Yılmaz Y. Complex Interval Matrix and Its Some Properties. TJMCS. 2023;15(1):20-6.