Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 120 - 127, 31.12.2020
https://doi.org/10.47000/tjmcs.704794

Öz

Kaynakça

  • Bishop, R. L. {\em There is more than one way to frame a curve}, The American Mathematical Monthly, \textbf{82}(3)(1975), 246--251.
  • Farin, G., A history of curves and surfaces, Handbook of Computer Aided Geometric Design, 2002.
  • Floater, M.S., {\em Derivatives of rational B\'{e}zier curves}, Computer Aided Geometric Design, \textbf{9}(3)(1991), 161--174.
  • \.{I}ncesu, M., G\"{u}rsoy, O., {\em The principal forms and curvatures on Bezier curves}, XVII National Mathematics Symposium, Abant \.{I}zzet Baysal University, (2004), 146--157.
  • Keskin, O., Yayli, Y., {\em An application of N-Bishop frame to spherical im-ages for direction curves}, International Journal of Geometric Methods in Modern Physics, \textbf{14}(11)(2017).
  • Marsh, D., Applied geometry for computer graphics and CAD, Springer-Verlag, Berlin, 2005.
  • Samanci, H. K., Celik, S., \.{I}ncesu, M. , {\em The Bishop Frame of Bezier Curves}, Life Science Journal, \textbf{12}(6)(2015).
  • Sapidis, N.S., Frey, W.H., {\em Controlling the curvature of a quadratic Bezier curve}, Computer Aided Geometric Design, \textbf{9}(1992), 85--91.
  • Scofield, P.D., {\em Curves of constant precession}, The American mathematical monthly, \textbf{102}(6)(1995), 531--537.
  • Uzuno\u{g}lu, B., G\"{o}k, \.{I}., Yayl\i, Y., {\em A new approach to curves of constant precession}, Applied Mathematics and Computation, \textbf{275}(2016), 317--323.
  • Y\i lmaz, S., Turgut, M., {\em A new version of Bishop frame and an application to spherical images}, Journal of Mathematical Analysis and Applications, \textbf{371}(2)(2010), 764--776.
  • Y\i lmaz, S., \"{O}zy\i lmaz, E., Turgut, M., {\em New spherical indicatrices and their characterizations}, An. St. Univ. Ovidius Constanta, \textbf{18}(2)(2010), 337--354.

Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames

Yıl 2020, , 120 - 127, 31.12.2020
https://doi.org/10.47000/tjmcs.704794

Öz

The purpose of our paper is to investigate N-Bishop frame of the quadratic Bezier curve which is one of the effective methods for computer-aided geometric design (CAGD). Then the N-Bishop curvatures and derivative formulas for quadratics Bezier curve are calculated and give some numeric examples.

Kaynakça

  • Bishop, R. L. {\em There is more than one way to frame a curve}, The American Mathematical Monthly, \textbf{82}(3)(1975), 246--251.
  • Farin, G., A history of curves and surfaces, Handbook of Computer Aided Geometric Design, 2002.
  • Floater, M.S., {\em Derivatives of rational B\'{e}zier curves}, Computer Aided Geometric Design, \textbf{9}(3)(1991), 161--174.
  • \.{I}ncesu, M., G\"{u}rsoy, O., {\em The principal forms and curvatures on Bezier curves}, XVII National Mathematics Symposium, Abant \.{I}zzet Baysal University, (2004), 146--157.
  • Keskin, O., Yayli, Y., {\em An application of N-Bishop frame to spherical im-ages for direction curves}, International Journal of Geometric Methods in Modern Physics, \textbf{14}(11)(2017).
  • Marsh, D., Applied geometry for computer graphics and CAD, Springer-Verlag, Berlin, 2005.
  • Samanci, H. K., Celik, S., \.{I}ncesu, M. , {\em The Bishop Frame of Bezier Curves}, Life Science Journal, \textbf{12}(6)(2015).
  • Sapidis, N.S., Frey, W.H., {\em Controlling the curvature of a quadratic Bezier curve}, Computer Aided Geometric Design, \textbf{9}(1992), 85--91.
  • Scofield, P.D., {\em Curves of constant precession}, The American mathematical monthly, \textbf{102}(6)(1995), 531--537.
  • Uzuno\u{g}lu, B., G\"{o}k, \.{I}., Yayl\i, Y., {\em A new approach to curves of constant precession}, Applied Mathematics and Computation, \textbf{275}(2016), 317--323.
  • Y\i lmaz, S., Turgut, M., {\em A new version of Bishop frame and an application to spherical images}, Journal of Mathematical Analysis and Applications, \textbf{371}(2)(2010), 764--776.
  • Y\i lmaz, S., \"{O}zy\i lmaz, E., Turgut, M., {\em New spherical indicatrices and their characterizations}, An. St. Univ. Ovidius Constanta, \textbf{18}(2)(2010), 337--354.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Hatice Kusak Samancı 0000-0001-6685-236X

Muhsin İncesu 0000-0003-2515-9627

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kusak Samancı, H., & İncesu, M. (2020). Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames. Turkish Journal of Mathematics and Computer Science, 12(2), 120-127. https://doi.org/10.47000/tjmcs.704794
AMA Kusak Samancı H, İncesu M. Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames. TJMCS. Aralık 2020;12(2):120-127. doi:10.47000/tjmcs.704794
Chicago Kusak Samancı, Hatice, ve Muhsin İncesu. “Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames”. Turkish Journal of Mathematics and Computer Science 12, sy. 2 (Aralık 2020): 120-27. https://doi.org/10.47000/tjmcs.704794.
EndNote Kusak Samancı H, İncesu M (01 Aralık 2020) Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames. Turkish Journal of Mathematics and Computer Science 12 2 120–127.
IEEE H. Kusak Samancı ve M. İncesu, “Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames”, TJMCS, c. 12, sy. 2, ss. 120–127, 2020, doi: 10.47000/tjmcs.704794.
ISNAD Kusak Samancı, Hatice - İncesu, Muhsin. “Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames”. Turkish Journal of Mathematics and Computer Science 12/2 (Aralık 2020), 120-127. https://doi.org/10.47000/tjmcs.704794.
JAMA Kusak Samancı H, İncesu M. Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames. TJMCS. 2020;12:120–127.
MLA Kusak Samancı, Hatice ve Muhsin İncesu. “Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames”. Turkish Journal of Mathematics and Computer Science, c. 12, sy. 2, 2020, ss. 120-7, doi:10.47000/tjmcs.704794.
Vancouver Kusak Samancı H, İncesu M. Investigating a Quadratic Bezier Curve Due to N-C-W and N-Bishop Frames. TJMCS. 2020;12(2):120-7.