Research Article
BibTex RIS Cite

Year 2021, Volume: 13 Issue: 2, 318 - 330, 31.12.2021
https://doi.org/10.47000/tjmcs.909498

Abstract

References

  • [1] Adilov, G., Yesilce, I., On Generalizations of the Concept of Convexity, Hacettepe Journal of Mathematics and Statistics, 41(2012), 723–730.
  • [2] Adilov, G., Yesilce, I., $B^{-1}$-convex Functions, Journal of Convex Analysis, 24(2017), 505–517.
  • [3] Adilov, G., Yesilce, I., Some important properties of $B$-convex functions, Journal of Nonlinear and Convex Analysis, 19(2018), 669-680.
  • [4] Adilov, G. R., Kemali, S., Abstract convexity and Hermite-Hadamard type inequalities, Journal of Inequalities and Applications, 2009(2009), 943534.
  • [5] Alomari, M.W., Darus, M., Kirmaci, U.S., Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Mathematica Scientia, 31(2011), 1643–1652.
  • [6] Avriel, M., r-convex Functions, Mathematical Programming, 2(1972), 309–323.
  • [7] Bayoumi, A., Fathy Ahmed A., p-Convex Functions in Discrete Sets, International Journal of Engineering and Applied Sciences, 4(2017), 63–66.
  • [8] Breckner, W.W., Stetigkeitsaussagen füreine Klasse verallgemekterter konvexer Funktionen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13–20.
  • [9] Briec W., Horvath, C., B-convexity, Optimization, 53(2004), 103–127.
  • [10] Dragomir, S., Fitzpatrick, S., Hadamard’s inequality for s-convex functions in the first sense and applications, Demonstratio Mathematica, 31(1998), 633–642.
  • [11] Dragomir, S. S., Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32(1999), 687–696.
  • [12] Eken, Z., Kemali, S., Tinaztepe, G., Adilov G., The Hermite-Hadamard Inequalities for p-Convex Functions, Hacettepe Journal of Mathematics and Statistics, 50(5)(2021), 1268–1279, https://doi.org/10.15672/hujms.775508.
  • [13] Gozpinar, A., Set, E., Dragomir, S S., Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex, Acta Mathematica Universitatis Comenianae, 88(2019), 87–100.
  • [14] Kemali, S., Sezer, S., Tinaztepe, G., Adilov, G., s-Convex Functions in the Third Sense, Korean J. Math., 29(3)(2021), 593–602.
  • [15] Kemali, S., Tinaztepe, G., Adilov, G., New Type Inequalities For B-Convex Functions Involving Hadamard Fractional Integral, Facta Universitatis-Series Mathematics And Informatics, 33(2018), 697–704.
  • [16] Orlicz, W., A note on modular spaces I, Bull. Acad. Polon. Soi., Ser. Math. Astronom Phys., 9(1961), 157-162.
  • [17] Özcan, S., Iscan, I., Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019(2019), 201.
  • [18] Rockafellar, R.T., Convex Analysis, Princeton University Press, New Jersey, 1972.
  • [19] Rubinov, A., Abstract Convexity and Global Optimization, Nonconvex Optimization and Its Applications, Kluwer Academic Publisher, Dordrecht, The Netherlands, 2000.
  • [20] Sarikaya, M.Z., Kiris, M.E., Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Mathematical Notes, 16(2015), 491–501.
  • [21] Set, E., Özdemir, M., Dragomir, S., On Hadamard-type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, (2010), 1–12.
  • [22] Set, E., Iscan, I., Kara, H.H., Hermite-Hadamard-Fejer Type Inequalities for s-Convex Function in the Second Sense via Fractional Integrals, Filomat, 30(2016), 3131–3138.
  • [23] Sezer, S., Eken, Z., Tinaztepe, G., Adilov, G., p-Convex Functions and Some of Their Properties, Numerical Functional Analysis and Optimization, DOI 10.1080/01630563.2021.1884876, (2021).
  • [24] Sezer, S., The Hermite-Hadamard Inequality for s-Convex Functions in the Third Sense, AIMS Mathematics, 6(2021), 7719–7732.
  • [25] Sezer, S., Hermite-Hadamard Type Inequalities for the Functions Whose Absolute Values of First Derivatives are p-Convex Function, Fundamental Journal of Mathematics and Applications, 4(2021), 88–99.

Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense

Year 2021, Volume: 13 Issue: 2, 318 - 330, 31.12.2021
https://doi.org/10.47000/tjmcs.909498

Abstract

In this paper, some Hermite-Hadamard type inequalites for $s$-convex functions in the third sense are studied. It is established several new inequalities for functions whose derivative in absolute value and $p$th power of its derivative in absolute value are $s$-convex in the third sense. In addition, these inequalities are used to find an upper bound for error in numerical integration for this type of functions.

References

  • [1] Adilov, G., Yesilce, I., On Generalizations of the Concept of Convexity, Hacettepe Journal of Mathematics and Statistics, 41(2012), 723–730.
  • [2] Adilov, G., Yesilce, I., $B^{-1}$-convex Functions, Journal of Convex Analysis, 24(2017), 505–517.
  • [3] Adilov, G., Yesilce, I., Some important properties of $B$-convex functions, Journal of Nonlinear and Convex Analysis, 19(2018), 669-680.
  • [4] Adilov, G. R., Kemali, S., Abstract convexity and Hermite-Hadamard type inequalities, Journal of Inequalities and Applications, 2009(2009), 943534.
  • [5] Alomari, M.W., Darus, M., Kirmaci, U.S., Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Mathematica Scientia, 31(2011), 1643–1652.
  • [6] Avriel, M., r-convex Functions, Mathematical Programming, 2(1972), 309–323.
  • [7] Bayoumi, A., Fathy Ahmed A., p-Convex Functions in Discrete Sets, International Journal of Engineering and Applied Sciences, 4(2017), 63–66.
  • [8] Breckner, W.W., Stetigkeitsaussagen füreine Klasse verallgemekterter konvexer Funktionen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13–20.
  • [9] Briec W., Horvath, C., B-convexity, Optimization, 53(2004), 103–127.
  • [10] Dragomir, S., Fitzpatrick, S., Hadamard’s inequality for s-convex functions in the first sense and applications, Demonstratio Mathematica, 31(1998), 633–642.
  • [11] Dragomir, S. S., Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32(1999), 687–696.
  • [12] Eken, Z., Kemali, S., Tinaztepe, G., Adilov G., The Hermite-Hadamard Inequalities for p-Convex Functions, Hacettepe Journal of Mathematics and Statistics, 50(5)(2021), 1268–1279, https://doi.org/10.15672/hujms.775508.
  • [13] Gozpinar, A., Set, E., Dragomir, S S., Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex, Acta Mathematica Universitatis Comenianae, 88(2019), 87–100.
  • [14] Kemali, S., Sezer, S., Tinaztepe, G., Adilov, G., s-Convex Functions in the Third Sense, Korean J. Math., 29(3)(2021), 593–602.
  • [15] Kemali, S., Tinaztepe, G., Adilov, G., New Type Inequalities For B-Convex Functions Involving Hadamard Fractional Integral, Facta Universitatis-Series Mathematics And Informatics, 33(2018), 697–704.
  • [16] Orlicz, W., A note on modular spaces I, Bull. Acad. Polon. Soi., Ser. Math. Astronom Phys., 9(1961), 157-162.
  • [17] Özcan, S., Iscan, I., Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019(2019), 201.
  • [18] Rockafellar, R.T., Convex Analysis, Princeton University Press, New Jersey, 1972.
  • [19] Rubinov, A., Abstract Convexity and Global Optimization, Nonconvex Optimization and Its Applications, Kluwer Academic Publisher, Dordrecht, The Netherlands, 2000.
  • [20] Sarikaya, M.Z., Kiris, M.E., Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Mathematical Notes, 16(2015), 491–501.
  • [21] Set, E., Özdemir, M., Dragomir, S., On Hadamard-type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, (2010), 1–12.
  • [22] Set, E., Iscan, I., Kara, H.H., Hermite-Hadamard-Fejer Type Inequalities for s-Convex Function in the Second Sense via Fractional Integrals, Filomat, 30(2016), 3131–3138.
  • [23] Sezer, S., Eken, Z., Tinaztepe, G., Adilov, G., p-Convex Functions and Some of Their Properties, Numerical Functional Analysis and Optimization, DOI 10.1080/01630563.2021.1884876, (2021).
  • [24] Sezer, S., The Hermite-Hadamard Inequality for s-Convex Functions in the Third Sense, AIMS Mathematics, 6(2021), 7719–7732.
  • [25] Sezer, S., Hermite-Hadamard Type Inequalities for the Functions Whose Absolute Values of First Derivatives are p-Convex Function, Fundamental Journal of Mathematics and Applications, 4(2021), 88–99.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Zeynep Eken 0000-0002-8939-4653

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Eken, Z. (2021). Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense. Turkish Journal of Mathematics and Computer Science, 13(2), 318-330. https://doi.org/10.47000/tjmcs.909498
AMA 1.Eken Z. Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense. TJMCS. 2021;13(2):318-330. doi:10.47000/tjmcs.909498
Chicago Eken, Zeynep. 2021. “Hermite-Hadamard Type Inequalities Related to S-Convex Functions in the Third Sense”. Turkish Journal of Mathematics and Computer Science 13 (2): 318-30. https://doi.org/10.47000/tjmcs.909498.
EndNote Eken Z (December 1, 2021) Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense. Turkish Journal of Mathematics and Computer Science 13 2 318–330.
IEEE [1]Z. Eken, “Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense”, TJMCS, vol. 13, no. 2, pp. 318–330, Dec. 2021, doi: 10.47000/tjmcs.909498.
ISNAD Eken, Zeynep. “Hermite-Hadamard Type Inequalities Related to S-Convex Functions in the Third Sense”. Turkish Journal of Mathematics and Computer Science 13/2 (December 1, 2021): 318-330. https://doi.org/10.47000/tjmcs.909498.
JAMA 1.Eken Z. Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense. TJMCS. 2021;13:318–330.
MLA Eken, Zeynep. “Hermite-Hadamard Type Inequalities Related to S-Convex Functions in the Third Sense”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 2, Dec. 2021, pp. 318-30, doi:10.47000/tjmcs.909498.
Vancouver 1.Eken Z. Hermite-Hadamard Type Inequalities Related to s-Convex Functions in the Third Sense. TJMCS [Internet]. 2021 Dec. 1;13(2):318-30. Available from: https://izlik.org/JA62LX34MS