Araştırma Makalesi
BibTex RIS Kaynak Göster

A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$

Yıl 2018, Cilt: 8, 49 - 64, 30.06.2018

Öz

Using the six parameters truncated Mittag-Leffler function, we introduce a convenient truncated function to define the so-called truncated V-fractional derivative type. In this sense, we propose the derivative of a vector valued function and define the V-fractional Jacobian matrix whose properties allow us to say that: the multivariable truncated V-fractional derivative type, as proposed here, generalizes the truncated V-fractional derivative type and can bee extended to obtain a truncated V-fractional partial derivative type. As applications, we discuss and prove the order change associated with two indices  of two truncated V-fractional partial derivative type and propose the truncated V-fractional Green theorem.

Kaynakça

  • Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1)(2015), 1–10.
  • Baleanu, D., Machado, J. A. T., Luo, A. C., Fractional Dynamics and Control, Springer, New York, 2011.
  • Diethelm, K., Fractional differential equations. Theory and numerical treatment. Scriptum, Institute of Computational Mathematics, Technical University of Braunschweig, 2003.
  • Gözütok, N. Y., Gözütok, U., Multi-variable conformable fractional calculus, Filomat, 32(1)(2018), 45–53.
  • Katugampola, U. N., A new fractional derivative with classical properties, arXiv preprint arXiv:1410.6535.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. and Appl. Math., 264(2014), 65–70.
  • Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., Feliu-Batlle, V., Fractional-order systems and controls: fundamentals and applications, Springer-Verlag, London, 2010.
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., M-fractional derivative with classical properties, arXiv:1704.08186 [math.CA], (2017).
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., Mittag-Leffer functions and the truncated V-fractional derivative, Mediterr. J. Math., 4(6)(2017) 244.
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, Inter. J. Anal. and Appl., 16(1)(2018), 83–96.
  • Stewart, J., Calculus, Cengage Learning, Boston, 2015.
Yıl 2018, Cilt: 8, 49 - 64, 30.06.2018

Öz

Kaynakça

  • Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1)(2015), 1–10.
  • Baleanu, D., Machado, J. A. T., Luo, A. C., Fractional Dynamics and Control, Springer, New York, 2011.
  • Diethelm, K., Fractional differential equations. Theory and numerical treatment. Scriptum, Institute of Computational Mathematics, Technical University of Braunschweig, 2003.
  • Gözütok, N. Y., Gözütok, U., Multi-variable conformable fractional calculus, Filomat, 32(1)(2018), 45–53.
  • Katugampola, U. N., A new fractional derivative with classical properties, arXiv preprint arXiv:1410.6535.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. and Appl. Math., 264(2014), 65–70.
  • Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., Feliu-Batlle, V., Fractional-order systems and controls: fundamentals and applications, Springer-Verlag, London, 2010.
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., M-fractional derivative with classical properties, arXiv:1704.08186 [math.CA], (2017).
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., Mittag-Leffer functions and the truncated V-fractional derivative, Mediterr. J. Math., 4(6)(2017) 244.
  • Vanterler da C. Sousa, J., Capelas de Oliveira, E., A new truncated M-fractional derivative unifying some fractional derivatives with classical properties, Inter. J. Anal. and Appl., 16(1)(2018), 83–96.
  • Stewart, J., Calculus, Cengage Learning, Boston, 2015.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

José Vanterler Da Costa Sousa

Edmundo Capelas De Oliveira

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8

Kaynak Göster

APA Sousa, J. V. D. C., & Oliveira, E. C. D. (2018). A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$. Turkish Journal of Mathematics and Computer Science, 8, 49-64.
AMA Sousa JVDC, Oliveira ECD. A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$. TJMCS. Haziran 2018;8:49-64.
Chicago Sousa, José Vanterler Da Costa, ve Edmundo Capelas De Oliveira. “A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$”. Turkish Journal of Mathematics and Computer Science 8, Haziran (Haziran 2018): 49-64.
EndNote Sousa JVDC, Oliveira ECD (01 Haziran 2018) A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$. Turkish Journal of Mathematics and Computer Science 8 49–64.
IEEE J. V. D. C. Sousa ve E. C. D. Oliveira, “A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$”, TJMCS, c. 8, ss. 49–64, 2018.
ISNAD Sousa, José Vanterler Da Costa - Oliveira, Edmundo Capelas De. “A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$”. Turkish Journal of Mathematics and Computer Science 8 (Haziran 2018), 49-64.
JAMA Sousa JVDC, Oliveira ECD. A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$. TJMCS. 2018;8:49–64.
MLA Sousa, José Vanterler Da Costa ve Edmundo Capelas De Oliveira. “A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$”. Turkish Journal of Mathematics and Computer Science, c. 8, 2018, ss. 49-64.
Vancouver Sousa JVDC, Oliveira ECD. A Truncated $\mathcal{V}$-Fractional Derivative in $\mathbb{R}^n$. TJMCS. 2018;8:49-64.