In this article, we analyze the first order linear delay differential equation
\begin{equation*}
x^{\prime }(t)+p(t)x\left( \tau (t)\right) =0,\text{ }t\geq t_{0},
\end{equation*}
where $p,$ $\tau \in C\left( [t_{0},\infty ),\mathbb{R}^{+}\right) $ and $%
\tau (t)\leq t,\ \lim_{t\rightarrow \infty }\tau (t)=\infty $. Under the assumption that $\tau (t)$ is not necessarily monotone, we obtain new sufficient criterion for the oscillatory solutions of this equation. We also give an example illustrating the result.
Delay equation nonmonotone argument oscillatory solution nonoscillatory solution
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 13 Sayı: 2 |