Araştırma Makalesi
BibTex RIS Kaynak Göster

$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces

Yıl 2023, Cilt: 15 Sayı: 1, 27 - 34, 30.06.2023
https://doi.org/10.47000/tjmcs.1123430

Öz

In this paper, we present a new type of set called $\Psi_{\Gamma}-C$ set by using the operator $\Psi_{\Gamma}$. We investigate the relationships of these sets with some special sets which were studied in the literature. For instance $\theta$-open set, semi $\theta$-open set, $\theta$-semiopen set, regular $\theta$-closed set. In particular, we show that $\Psi_{\Gamma}-C$ set is weaker than $\theta$-open set. Furthermore, we prove that the collection of $\Psi_{\Gamma}-C$ set is closed under arbitrary union. Finally, we obtain the conclusion that the collection of $\Psi_{\Gamma}-C$ set forms a supratopology.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Amsaveni, V., Anitha, M., Subramanian, A., New types of semi-open sets, International Journal of New Innovations in Engineering and Technology, 9(4)(2019), 14–17.
  • Bandyopadhyay, C., Modak, S., A new topology via $\Psi$-operator, Proc. Nat. Acad. Sci. India, 76(4)(2006), 317–320.
  • Caldas, M., Ganster, M., Georgiou, D. N., Jafari, S., Noiri, T., On $\theta$-semiopen sets and separation axioms in topological spaces, Carpathian J. Math., 24(1)(2008), 13–22.
  • Devika, A., Thilagavathi, A., $M^{\ast}$-open sets in topological spaces, International Journal of Mathematics and Its Applications, 4(1-B)(2016), 1–8.
  • Islam, Md. M., Modak, S., Operators associated with the $*$ and $\psi$ operators, J. Taibah Univ. Sci., 12(4)(2018), 444–449.
  • Islam, Md. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2)(2018), 245–256.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M. E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Allam, A. A., Mahmoud, F.S., Khedr, F.H., On supratopological spaces, Indian J. Pure and Appl. Math., 14(4)(1983), 502–510.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 82(3)(2012), 233–243.
  • Modak, S., Bandyopadhyay, C., A note on $\Psi$-operator, Bull. Malays. Math. Sci. Soc. (2), 30(1)(2007), 43–48.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Mathematica Slovaca, 36(3)(1986), 297–312.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Tunç, A.N., O¨ zen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Velicko, N.V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
Yıl 2023, Cilt: 15 Sayı: 1, 27 - 34, 30.06.2023
https://doi.org/10.47000/tjmcs.1123430

Öz

Proje Numarası

-

Kaynakça

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Amsaveni, V., Anitha, M., Subramanian, A., New types of semi-open sets, International Journal of New Innovations in Engineering and Technology, 9(4)(2019), 14–17.
  • Bandyopadhyay, C., Modak, S., A new topology via $\Psi$-operator, Proc. Nat. Acad. Sci. India, 76(4)(2006), 317–320.
  • Caldas, M., Ganster, M., Georgiou, D. N., Jafari, S., Noiri, T., On $\theta$-semiopen sets and separation axioms in topological spaces, Carpathian J. Math., 24(1)(2008), 13–22.
  • Devika, A., Thilagavathi, A., $M^{\ast}$-open sets in topological spaces, International Journal of Mathematics and Its Applications, 4(1-B)(2016), 1–8.
  • Islam, Md. M., Modak, S., Operators associated with the $*$ and $\psi$ operators, J. Taibah Univ. Sci., 12(4)(2018), 444–449.
  • Islam, Md. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2)(2018), 245–256.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M. E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Allam, A. A., Mahmoud, F.S., Khedr, F.H., On supratopological spaces, Indian J. Pure and Appl. Math., 14(4)(1983), 502–510.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 82(3)(2012), 233–243.
  • Modak, S., Bandyopadhyay, C., A note on $\Psi$-operator, Bull. Malays. Math. Sci. Soc. (2), 30(1)(2007), 43–48.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Mathematica Slovaca, 36(3)(1986), 297–312.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Tunç, A.N., O¨ zen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Velicko, N.V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Ayşe Nur Tunç 0000-0003-3439-4223

Sena Özen Yıldırım 0000-0002-4460-2949

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 1

Kaynak Göster

APA Tunç, A. N., & Özen Yıldırım, S. (2023). $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. Turkish Journal of Mathematics and Computer Science, 15(1), 27-34. https://doi.org/10.47000/tjmcs.1123430
AMA Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. Haziran 2023;15(1):27-34. doi:10.47000/tjmcs.1123430
Chicago Tunç, Ayşe Nur, ve Sena Özen Yıldırım. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science 15, sy. 1 (Haziran 2023): 27-34. https://doi.org/10.47000/tjmcs.1123430.
EndNote Tunç AN, Özen Yıldırım S (01 Haziran 2023) $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. Turkish Journal of Mathematics and Computer Science 15 1 27–34.
IEEE A. N. Tunç ve S. Özen Yıldırım, “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”, TJMCS, c. 15, sy. 1, ss. 27–34, 2023, doi: 10.47000/tjmcs.1123430.
ISNAD Tunç, Ayşe Nur - Özen Yıldırım, Sena. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science 15/1 (Haziran 2023), 27-34. https://doi.org/10.47000/tjmcs.1123430.
JAMA Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. 2023;15:27–34.
MLA Tunç, Ayşe Nur ve Sena Özen Yıldırım. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science, c. 15, sy. 1, 2023, ss. 27-34, doi:10.47000/tjmcs.1123430.
Vancouver Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. 2023;15(1):27-34.