Araştırma Makalesi
BibTex RIS Kaynak Göster

On Polynomial Space Curves with Flc-frame

Yıl 2023, Cilt: 15 Sayı: 2, 414 - 422, 31.12.2023
https://doi.org/10.47000/tjmcs.1127766

Öz

The first and second derivatives of a curve provide us fundamental
information in the study of the behavior of curve near a point. However,
if a curve is a polynomial space curve of degree n, we don’t know what
is the geometric meaning of the n-th derivative of the curve? There is no
doubt that the Frenet frame is not suitable for this purpose because it is
constructed by using first and second derivatives of a curve. On the other
hand, in this paper by using a new frame called as Flc-frame we are able
to give the geometric meaning of the n-th derivative of a curve. Moreover,
we explore some basic concepts regarding polynomial space curves from
point of view of Flc-frame in three dimensional Euclidean space.

Kaynakça

  • Ayvacı, K.H., Senyurt, S., Canlı, D., Some characterizations of spherical indicatrix curves generated by Flc frame, Turk. J. Math. Comput. Sci., 13(2021), 379–387.
  • Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(1975), 246–251.
  • Dede, M., A new representation of tubular surfaces, Houston Journal of Mathematics, 45(2018), 707–720.
  • Dede, M., Ekici, C., Görgülü, A., Directional q-frame along a space curve, IJARCSSE, 5(2015), 775–780.
  • Farouki, R. T., Pythagorean-Hodograph Curves: Algebra and Geometry, Springer, 2008.
  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition, CRC Press, Boca Raton, 1998.
  • Guggenheimer, H., Computing frames along a trajectory, Comput. Aided Geom. Des., 6(1989), 77–78.
  • Jüttler, B., Maurer, C., Cubic Pythagorean Hodograph spline curves and applications to sweep surface modeling, Comput. Aided Design, 31(1999), 73–83.
  • Li, Y., Eren, K., Ayvacı, K.H., Ersoy, S., Simultaneous characterizations of partner ruled surfaces using Flc frame, AIMS Math., 7(2022), 20213–20229.
  • Ravani, R., Meghdari A., Ravani, B., Rational Frenet-Serret curves and rotation minimizing frames in spatial motion design, IEEE international conference on Intelligent engineering systems, (2004), 186–192.
  • Schot, S.H., Geometry of the third derivative, Mathematics Magazine, 51(1978), 259–275.
  • Schot, S.H., Geometrical properties of the penosculating tonics of a plane curve, Amer. Math. Monthly, 82(1979), 449–457.
  • Senyurt, S., Ayvacı, K.H., On geometry of focal surfaces due to Flc frame in Euclidean 3-space, Authorea, (2022).
  • Wang, W., Juttler, B., Zheng, D., Liu, Y., Computation of rotation minimizing frame, ACM Trans. Graph., 27(2008), article no. 2.
Yıl 2023, Cilt: 15 Sayı: 2, 414 - 422, 31.12.2023
https://doi.org/10.47000/tjmcs.1127766

Öz

Kaynakça

  • Ayvacı, K.H., Senyurt, S., Canlı, D., Some characterizations of spherical indicatrix curves generated by Flc frame, Turk. J. Math. Comput. Sci., 13(2021), 379–387.
  • Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(1975), 246–251.
  • Dede, M., A new representation of tubular surfaces, Houston Journal of Mathematics, 45(2018), 707–720.
  • Dede, M., Ekici, C., Görgülü, A., Directional q-frame along a space curve, IJARCSSE, 5(2015), 775–780.
  • Farouki, R. T., Pythagorean-Hodograph Curves: Algebra and Geometry, Springer, 2008.
  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition, CRC Press, Boca Raton, 1998.
  • Guggenheimer, H., Computing frames along a trajectory, Comput. Aided Geom. Des., 6(1989), 77–78.
  • Jüttler, B., Maurer, C., Cubic Pythagorean Hodograph spline curves and applications to sweep surface modeling, Comput. Aided Design, 31(1999), 73–83.
  • Li, Y., Eren, K., Ayvacı, K.H., Ersoy, S., Simultaneous characterizations of partner ruled surfaces using Flc frame, AIMS Math., 7(2022), 20213–20229.
  • Ravani, R., Meghdari A., Ravani, B., Rational Frenet-Serret curves and rotation minimizing frames in spatial motion design, IEEE international conference on Intelligent engineering systems, (2004), 186–192.
  • Schot, S.H., Geometry of the third derivative, Mathematics Magazine, 51(1978), 259–275.
  • Schot, S.H., Geometrical properties of the penosculating tonics of a plane curve, Amer. Math. Monthly, 82(1979), 449–457.
  • Senyurt, S., Ayvacı, K.H., On geometry of focal surfaces due to Flc frame in Euclidean 3-space, Authorea, (2022).
  • Wang, W., Juttler, B., Zheng, D., Liu, Y., Computation of rotation minimizing frame, ACM Trans. Graph., 27(2008), article no. 2.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Mustafa Dede 0000-0003-2652-637X

Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 2

Kaynak Göster

APA Dede, M. (2023). On Polynomial Space Curves with Flc-frame. Turkish Journal of Mathematics and Computer Science, 15(2), 414-422. https://doi.org/10.47000/tjmcs.1127766
AMA Dede M. On Polynomial Space Curves with Flc-frame. TJMCS. Aralık 2023;15(2):414-422. doi:10.47000/tjmcs.1127766
Chicago Dede, Mustafa. “On Polynomial Space Curves With Flc-Frame”. Turkish Journal of Mathematics and Computer Science 15, sy. 2 (Aralık 2023): 414-22. https://doi.org/10.47000/tjmcs.1127766.
EndNote Dede M (01 Aralık 2023) On Polynomial Space Curves with Flc-frame. Turkish Journal of Mathematics and Computer Science 15 2 414–422.
IEEE M. Dede, “On Polynomial Space Curves with Flc-frame”, TJMCS, c. 15, sy. 2, ss. 414–422, 2023, doi: 10.47000/tjmcs.1127766.
ISNAD Dede, Mustafa. “On Polynomial Space Curves With Flc-Frame”. Turkish Journal of Mathematics and Computer Science 15/2 (Aralık 2023), 414-422. https://doi.org/10.47000/tjmcs.1127766.
JAMA Dede M. On Polynomial Space Curves with Flc-frame. TJMCS. 2023;15:414–422.
MLA Dede, Mustafa. “On Polynomial Space Curves With Flc-Frame”. Turkish Journal of Mathematics and Computer Science, c. 15, sy. 2, 2023, ss. 414-22, doi:10.47000/tjmcs.1127766.
Vancouver Dede M. On Polynomial Space Curves with Flc-frame. TJMCS. 2023;15(2):414-22.