Let $S$ be a $\Gamma$-semigroup with zero. We define the $S_{S}^{\Gamma}$ subset of $S$ as $S_{S}^{\Gamma}=\{a\in S \mid a\Gamma (S\Gamma a)=(0)\}.$ This set is called the source of $\Gamma$-semiprimeness of $S$. In this study, we examined some properties of $S_{S}^{\Gamma}$ set and defined $\lvert S_{S}^{\Gamma}\rvert$-idempotent , $\lvert S_{S}^{\Gamma}\rvert$-regular and $\lvert S_{S}^{\Gamma}\rvert$-reduced $\Gamma$-semigroups. We then obtained some results for these newly defined semigroups.
Source of $\Gamma$-semiprimeness $\lvert S_{S}^{\Gamma}\rvert$-idempotent $\Gamma$-semigroup $\lvert S_{S}^{\Gamma}\rvert$-regular $\Gamma$-semigroup $\lvert S_{S}^{\Gamma}\rvert$-reduced $\Gamma$-semigroup
| Primary Language | English |
|---|---|
| Subjects | Algebra and Number Theory |
| Journal Section | Articles |
| Authors | |
| Publication Date | June 30, 2025 |
| Submission Date | October 19, 2023 |
| Acceptance Date | February 11, 2025 |
| Published in Issue | Year 2025 Volume: 17 Issue: 1 |