Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 10 - 16, 30.06.2025
https://doi.org/10.47000/tjmcs.1378193

Abstract

References

  • Albayrak, B., Yeşil, D., Karalarlıoğlu Camcı D., The source of semiprimeness of semigroups, Journal of Mathematics, 2021(2021), 1–8.
  • Jyothi, V., Sarala, Y., Madhusudhana Rao, D., 2Primal Γ-semigroups, IJPT, 9(2017), 30540–30552.
  • Saed, I.A., On prime and semiprime Gamma rings with symmetric Gamma n-centralizers, Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS) 9-10 December 2020, Journal of Physics: Conference Series, Baghdad, Iraq, 1879(2021).
  • Savithri, S., Gangadhara Rao, A., Achala, L., Pradeep, J.M., Γ-Semigroups in which primary Γ-ideals are prime and maximal, International Journal of Scientific and Innovative Mathematical Research, 5(2017), 36–43.
  • Sen, M. K., Saha, N.K., On Γ-semigroup I, Bulletin of the Calcutta Mathematical Society, 78 (1986), 180–186.
  • Siripitukted, M., Iampan, A., On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal, 48(2008), 585–591.

The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups

Year 2025, Volume: 17 Issue: 1, 10 - 16, 30.06.2025
https://doi.org/10.47000/tjmcs.1378193

Abstract

Let $S$ be a $\Gamma$-semigroup with zero. We define the $S_{S}^{\Gamma}$ subset of $S$ as $S_{S}^{\Gamma}=\{a\in S \mid a\Gamma (S\Gamma a)=(0)\}.$ This set is called the source of $\Gamma$-semiprimeness of $S$. In this study, we examined some properties of $S_{S}^{\Gamma}$ set and defined $\lvert S_{S}^{\Gamma}\rvert$-idempotent , $\lvert S_{S}^{\Gamma}\rvert$-regular and $\lvert S_{S}^{\Gamma}\rvert$-reduced $\Gamma$-semigroups. We then obtained some results for these newly defined semigroups.

References

  • Albayrak, B., Yeşil, D., Karalarlıoğlu Camcı D., The source of semiprimeness of semigroups, Journal of Mathematics, 2021(2021), 1–8.
  • Jyothi, V., Sarala, Y., Madhusudhana Rao, D., 2Primal Γ-semigroups, IJPT, 9(2017), 30540–30552.
  • Saed, I.A., On prime and semiprime Gamma rings with symmetric Gamma n-centralizers, Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS) 9-10 December 2020, Journal of Physics: Conference Series, Baghdad, Iraq, 1879(2021).
  • Savithri, S., Gangadhara Rao, A., Achala, L., Pradeep, J.M., Γ-Semigroups in which primary Γ-ideals are prime and maximal, International Journal of Scientific and Innovative Mathematical Research, 5(2017), 36–43.
  • Sen, M. K., Saha, N.K., On Γ-semigroup I, Bulletin of the Calcutta Mathematical Society, 78 (1986), 180–186.
  • Siripitukted, M., Iampan, A., On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal, 48(2008), 585–591.
There are 6 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Didem Yeşil 0000-0003-0666-9410

Rasie Mekera 0000-0002-0092-2991

Didem Karalarlıoğlu Camcı 0000-0002-8413-3753

Publication Date June 30, 2025
Submission Date October 19, 2023
Acceptance Date February 11, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Yeşil, D., Mekera, R., & Karalarlıoğlu Camcı, D. (2025). The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups. Turkish Journal of Mathematics and Computer Science, 17(1), 10-16. https://doi.org/10.47000/tjmcs.1378193
AMA Yeşil D, Mekera R, Karalarlıoğlu Camcı D. The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups. TJMCS. June 2025;17(1):10-16. doi:10.47000/tjmcs.1378193
Chicago Yeşil, Didem, Rasie Mekera, and Didem Karalarlıoğlu Camcı. “The Source of $\Gamma$-Semiprimeness on $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 10-16. https://doi.org/10.47000/tjmcs.1378193.
EndNote Yeşil D, Mekera R, Karalarlıoğlu Camcı D (June 1, 2025) The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups. Turkish Journal of Mathematics and Computer Science 17 1 10–16.
IEEE D. Yeşil, R. Mekera, and D. Karalarlıoğlu Camcı, “The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups”, TJMCS, vol. 17, no. 1, pp. 10–16, 2025, doi: 10.47000/tjmcs.1378193.
ISNAD Yeşil, Didem et al. “The Source of $\Gamma$-Semiprimeness on $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 10-16. https://doi.org/10.47000/tjmcs.1378193.
JAMA Yeşil D, Mekera R, Karalarlıoğlu Camcı D. The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups. TJMCS. 2025;17:10–16.
MLA Yeşil, Didem et al. “The Source of $\Gamma$-Semiprimeness on $\Gamma$-Semigroups”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 10-16, doi:10.47000/tjmcs.1378193.
Vancouver Yeşil D, Mekera R, Karalarlıoğlu Camcı D. The Source of $\Gamma$-semiprimeness on $\Gamma$-semigroups. TJMCS. 2025;17(1):10-6.