Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 136 - 144, 30.06.2025
https://doi.org/10.47000/tjmcs.1636247

Abstract

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57–66.
  • Ali, I., Seadawy, A.R., Rizvi, S.T.R., Younis, M.: Painlev´e analysis for various nonlinear Schr¨odinger dynamical equations, Int. J. Mod. Phys. B, 35(03)(2021), 2150038.
  • Ali, K.K., Abdelrahman, M.I., Raslan, K.R., Adel, W., On analytical and numerical study for the Peyrard– Bishop DNA dynamic model, Appl. Math. Inf. Sci 16(5)(2022), 749–759.
  • Alquran, M., Jaradat, H.M., Al-Shara’, S., Awawdeh, F., A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients, Int. J. Nonlinear Sci. Numer. Simul. 16(6)(2015), 259–269.
  • Arafa, A.A.M., Rida, S.Z., Mohamed, H., Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56(5)(2011), 797.
  • Dikici, K.M., Analysis of Traveling Wave Solutions of Nonlinear Partial Differential Equations, Master’s Thesis, Ordu Üniversitesi, Institute of Natural and Applied Sciences, 2022.
  • Durran, D.R., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, (Vol. 32), Springer Science & Business Media, 2013.
  • Ekici, M., Ayaz, F., Solution of model equation of completely passive natural convection by improved differential transform method, Research on Engineering Structures and Materials, 3(1)(2017), 1–10.
  • Ekici, M., Ünal, M., Application of the exponential rational function method to some fractional soliton equations, In Emerging Applications of Differential Equations and Game Theory, IGI Global, 2020.
  • Ekici, M., Ünal, M., Application of the rational (G′/G)-expansion method for solving some coupled and combined wave equations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71(1)(2022), 116–132.
  • Ekici, M., Exact solutions to some nonlinear time-fractional evolution equations using the generalized Kudryashov method in mathematical physics, Symmetry, 15(10)(2023), 1961.
  • Ekici, M., Travelling wave solutions for some time-fractional nonlinear differential equations, BSJ Eng. Sci., 7(2)(2024), 246–253.
  • Ekici, M., Exact solutions of time-fractional thin-film ferroelectric material equation with conformable fractional derivative, BSJ Eng. Sci., 8(1)(2025), 5–6.
  • Ghergu, M., Radulescu, V., Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics, Springer Science & Business Media, 2011.
  • He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations, Chaos Solit. Fractals, 30(3)(2006), 700–708.
  • Kumar, S., Mohan, B., A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method, Phys. Scr., 96(12)(2021), 125255.
  • Mang, A., Gholami, A., Davatzikos, C., Biros, G., PDE-constrained optimization in medical image analysis, Optim. Eng., 19(2018), 765–812.
  • Mao, H., Qian, Y., Miao, Y., Solving the modified Camassa–Holm equation via the inverse scattering transform, Theor. Math. Phys., 216(2)(2023), 1189–1208.
  • Najera, L., Carrillo, M., Aguero, M.A., Non-classical solitons and the broken hydrogen bonds in DNA vibrational dynamics, Adv. Stud. Theor. Phys, 4(9-12)(2010), 495–510.
  • Odibat, Z., Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32(1)(2008), 28–39.
  • Odibat, Z., Momani, S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21(2)(2008), 194–199.
  • Scott, A., Encyclopedia of Nonlinear Science, Routledge, 2005.
  • Şenol, M., Gençyiğit, M., Demirbilek, U., Akinyemi, L., Rezazadeh, H., New analytical wave structures of the (3+ 1)-dimensional extended modified Ito equation of seventh-order, Journal of Applied Mathematics and Computing, 70(3)(2024), 2079–2095.
  • Tian, Q., Yang, X., Zhang, H., Xu, D., An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties, Comput. Appl. Math., 42(6)(2023), 246.
  • Tuluce Demiray, S., Pandir, Y., Bulut, H., Generalized Kudryashov method for time-fractional differential equations, Abstr. Appl. Anal., 2014(1)(2014).
  • Ünal M., Ekici, M., The double (G′/G, 1/G)-expansion method and its applications for some nonlinear partial differential equations, Journal of the Institute of Science and Technology, 11(1)(2021), 599–608.
  • Yıldırım Sucu, D., Bazı Kısmi Türevli Denklemlerin B-spline Sonlu Elemanlar Yöntemi ile Nümerik Cözümleri, Master’s Thesis, Nevşehir Hacı Bektaş Veli Üniversitesi, Graduate School of Natural and Applied Sciences, 2023.
  • Wang, M., Zhou, Y., Li, Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A., 216(1-5)(1996), 67–75.
  • Yang, X., Wu, L., Zhang, H., A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl Math Comput., 457 (2023), 128192.
  • Zafar, A., Ali, K.K., Raheel, M., Jafar, N., Nisar, K.S., Soliton solutions to the DNA Peyrard–Bishop equation with beta-derivative via three distinctive approaches, Eur. Phys. J. Plus, 135(9)(2020), 1–17.
  • Zhang, S., Tong, J.L., Wang, W., A generalized-expansion method for the mKdV equation with variable coefficients, Phys. Lett. A., 372(13)(2008), 2254–2257.

Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method

Year 2025, Volume: 17 Issue: 1, 136 - 144, 30.06.2025
https://doi.org/10.47000/tjmcs.1636247

Abstract

In this study, we investigated the space-time fractional order Peyrard–Bishop–Dauxois model using the unified method to derive exact analytical traveling wave solutions. By incorporating fractional derivatives, the model effectively captures memory effects and nonlocal interactions intrinsic to DNA dynamics, providing a refined
representation of processes such as DNA denaturation. Notably, our analysis led to the discovery of soliton solutions, along with novel hyperbolic, trigonometric, and rational forms. These results not only deepen our understanding of the complex nonlinear behavior inherent in biological systems but also underscore the robustness and versatility of the unified method in addressing intricate fractional differential equations. The findings of this study provide a foundation for the further refinement of mathematical models and the exploration of more sophisticated fractional dynamics in molecular biology.

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57–66.
  • Ali, I., Seadawy, A.R., Rizvi, S.T.R., Younis, M.: Painlev´e analysis for various nonlinear Schr¨odinger dynamical equations, Int. J. Mod. Phys. B, 35(03)(2021), 2150038.
  • Ali, K.K., Abdelrahman, M.I., Raslan, K.R., Adel, W., On analytical and numerical study for the Peyrard– Bishop DNA dynamic model, Appl. Math. Inf. Sci 16(5)(2022), 749–759.
  • Alquran, M., Jaradat, H.M., Al-Shara’, S., Awawdeh, F., A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients, Int. J. Nonlinear Sci. Numer. Simul. 16(6)(2015), 259–269.
  • Arafa, A.A.M., Rida, S.Z., Mohamed, H., Homotopy analysis method for solving biological population model, Communications in Theoretical Physics, 56(5)(2011), 797.
  • Dikici, K.M., Analysis of Traveling Wave Solutions of Nonlinear Partial Differential Equations, Master’s Thesis, Ordu Üniversitesi, Institute of Natural and Applied Sciences, 2022.
  • Durran, D.R., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, (Vol. 32), Springer Science & Business Media, 2013.
  • Ekici, M., Ayaz, F., Solution of model equation of completely passive natural convection by improved differential transform method, Research on Engineering Structures and Materials, 3(1)(2017), 1–10.
  • Ekici, M., Ünal, M., Application of the exponential rational function method to some fractional soliton equations, In Emerging Applications of Differential Equations and Game Theory, IGI Global, 2020.
  • Ekici, M., Ünal, M., Application of the rational (G′/G)-expansion method for solving some coupled and combined wave equations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71(1)(2022), 116–132.
  • Ekici, M., Exact solutions to some nonlinear time-fractional evolution equations using the generalized Kudryashov method in mathematical physics, Symmetry, 15(10)(2023), 1961.
  • Ekici, M., Travelling wave solutions for some time-fractional nonlinear differential equations, BSJ Eng. Sci., 7(2)(2024), 246–253.
  • Ekici, M., Exact solutions of time-fractional thin-film ferroelectric material equation with conformable fractional derivative, BSJ Eng. Sci., 8(1)(2025), 5–6.
  • Ghergu, M., Radulescu, V., Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics, Springer Science & Business Media, 2011.
  • He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations, Chaos Solit. Fractals, 30(3)(2006), 700–708.
  • Kumar, S., Mohan, B., A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method, Phys. Scr., 96(12)(2021), 125255.
  • Mang, A., Gholami, A., Davatzikos, C., Biros, G., PDE-constrained optimization in medical image analysis, Optim. Eng., 19(2018), 765–812.
  • Mao, H., Qian, Y., Miao, Y., Solving the modified Camassa–Holm equation via the inverse scattering transform, Theor. Math. Phys., 216(2)(2023), 1189–1208.
  • Najera, L., Carrillo, M., Aguero, M.A., Non-classical solitons and the broken hydrogen bonds in DNA vibrational dynamics, Adv. Stud. Theor. Phys, 4(9-12)(2010), 495–510.
  • Odibat, Z., Momani, S., Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32(1)(2008), 28–39.
  • Odibat, Z., Momani, S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21(2)(2008), 194–199.
  • Scott, A., Encyclopedia of Nonlinear Science, Routledge, 2005.
  • Şenol, M., Gençyiğit, M., Demirbilek, U., Akinyemi, L., Rezazadeh, H., New analytical wave structures of the (3+ 1)-dimensional extended modified Ito equation of seventh-order, Journal of Applied Mathematics and Computing, 70(3)(2024), 2079–2095.
  • Tian, Q., Yang, X., Zhang, H., Xu, D., An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties, Comput. Appl. Math., 42(6)(2023), 246.
  • Tuluce Demiray, S., Pandir, Y., Bulut, H., Generalized Kudryashov method for time-fractional differential equations, Abstr. Appl. Anal., 2014(1)(2014).
  • Ünal M., Ekici, M., The double (G′/G, 1/G)-expansion method and its applications for some nonlinear partial differential equations, Journal of the Institute of Science and Technology, 11(1)(2021), 599–608.
  • Yıldırım Sucu, D., Bazı Kısmi Türevli Denklemlerin B-spline Sonlu Elemanlar Yöntemi ile Nümerik Cözümleri, Master’s Thesis, Nevşehir Hacı Bektaş Veli Üniversitesi, Graduate School of Natural and Applied Sciences, 2023.
  • Wang, M., Zhou, Y., Li, Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A., 216(1-5)(1996), 67–75.
  • Yang, X., Wu, L., Zhang, H., A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl Math Comput., 457 (2023), 128192.
  • Zafar, A., Ali, K.K., Raheel, M., Jafar, N., Nisar, K.S., Soliton solutions to the DNA Peyrard–Bishop equation with beta-derivative via three distinctive approaches, Eur. Phys. J. Plus, 135(9)(2020), 1–17.
  • Zhang, S., Tong, J.L., Wang, W., A generalized-expansion method for the mKdV equation with variable coefficients, Phys. Lett. A., 372(13)(2008), 2254–2257.
There are 31 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Biological Mathematics, Applied Mathematics (Other)
Journal Section Articles
Authors

Mustafa Ekici 0000-0003-2494-8229

Nilay Akgönüllü Pirim 0009-0002-9990-9793

Publication Date June 30, 2025
Submission Date February 9, 2025
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Ekici, M., & Akgönüllü Pirim, N. (2025). Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method. Turkish Journal of Mathematics and Computer Science, 17(1), 136-144. https://doi.org/10.47000/tjmcs.1636247
AMA Ekici M, Akgönüllü Pirim N. Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method. TJMCS. June 2025;17(1):136-144. doi:10.47000/tjmcs.1636247
Chicago Ekici, Mustafa, and Nilay Akgönüllü Pirim. “Exact Solutions for Space-Time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 136-44. https://doi.org/10.47000/tjmcs.1636247.
EndNote Ekici M, Akgönüllü Pirim N (June 1, 2025) Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method. Turkish Journal of Mathematics and Computer Science 17 1 136–144.
IEEE M. Ekici and N. Akgönüllü Pirim, “Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method”, TJMCS, vol. 17, no. 1, pp. 136–144, 2025, doi: 10.47000/tjmcs.1636247.
ISNAD Ekici, Mustafa - Akgönüllü Pirim, Nilay. “Exact Solutions for Space-Time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 136-144. https://doi.org/10.47000/tjmcs.1636247.
JAMA Ekici M, Akgönüllü Pirim N. Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method. TJMCS. 2025;17:136–144.
MLA Ekici, Mustafa and Nilay Akgönüllü Pirim. “Exact Solutions for Space-Time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 136-44, doi:10.47000/tjmcs.1636247.
Vancouver Ekici M, Akgönüllü Pirim N. Exact Solutions for Space-time Fractional Peyrard-Bishop-Dauxois Model of DNA Dynamics by Using the Unified Method. TJMCS. 2025;17(1):136-44.